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Abstract

I model content formation for an information intermediary who selectively reports and omits

information to fit her content length. I show that even when the sender and the receiver share

the same preference and prior belief, the sender may still create two forms of content bias:

audience appeal (content appearing overly confirmatory) and sensationalism (content appear-

ing overly extreme, whether confirmatory or contradictory), in order to transmit information

efficiently. These biases are transparent to the rational receiver and improve welfare. Tak-

ing this model to its asymptotic limit, I show that the content (measured by a sentiment-type

variable) is a tractable and smooth function of a fundamental variable that is conditionally

Gaussian (a common shock property in learning) and a set of contextual parameters capturing

the economic environment. This function reflects how the sender evaluates information in her

selection process and enables the discussion of contextual effects on the extent of biases. My

model addresses the challenge of micro-founding sentiment analysis and has numerous impli-

cations related to media slant and the analysis of non-content data such as product ratings. JEL
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I INTRODUCTION

Reports created by information intermediaries often exhibit bias relative to the underlying real-

ity. For instance, in certain circumstances, even factually accurate content produced by trusted

news outlets may be skewed. This raises an intriguing question: What is the relationship between

reported information, the underlying reality, and the economic context in which reports are pro-

duced? To reliably interpret real-world communication content (e.g., in business and politics) and

make use of content data in economic research, we need a thorough understanding of this relation-

ship.

In this paper, I micro-found content bias by presenting a model of content formation in which

bias arises as a consequence of information selection. The model captures the situation of an infor-

mation intermediary who holds abundant information, but faces physical constraints determining

how much of it she can report. This situation is common, for example, in the news industry, where

media outlets may fit information to newspaper size, broadcast time, or webpage size. (As Sein-

feld put it, “It’s amazing that the amount of news that happens in the world every day always just

exactly fits the newspaper.”) Such an intermediary must report selectively, omitting some of the

information she holds.

To model this situation, I consider a sender who must choose a certain number of news pieces

(out of a larger collection that she has available, called the scenario) to present to a decision-maker.

Each news piece is binary, with, e.g., either positive or negative realization. The sender’s goal is to

maximize the decision-maker’s utility. My main findings are as follows:

• In equilibrium, the selected content may exhibit two distinct types of bias, both are well-

documented stylized facts: (i) audience appeal and (ii) sensationalism. The degree of each

depends on the economic context. These biases are due solely to the sender’s selection

or omission of information; the sender never lies. The biases are apparent, in the sense

that the rational decision-maker is not misled but correctly interprets the biases as a way
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of communicating more effectively. Rather than hurting welfare, the biases actually help

maximize it.

• Asymptotically, as both the total number of news pieces available (the complexity of the

scenario) and the sender’s reporting capacity (the complexity of the content) become large,

the model becomes tractable and smooth. The fundamental K, which summarizes the sce-

nario, is asymptotically conditionally Gaussian, a common property of shock specifications

in economic models with learning. The proportion of positive news in the content, which

resembles the sentiment measure in empirical content analysis, has slope in K given by a

probability density function proportional to

λF (K)
1
6λh(K)

1
6 ã′(K)

1
2 ,

where λF and λh come from higher-order curvatures of the fundamental distribution and

the utility, respectively, and ã is the decision-maker’s hypothetical action assuming he has

perfect information. Contextual parameters affect these terms.

The term “bias” refers to the disparity between the selected content and the underlying scenario.

My first main finding is that bias occurs even though the sender works for the decision-maker.

This is because the sender’s job is not just to relay information but to help the decision-maker

maximize his utility. Because she does not have enough reporting capacity to provide perfectly

precise content, she cannot uniquely label every possible scenario for the decision-maker. She

must therefore ask: Which scenarios should be pooled and assigned the same label? What content

should be used to label each pool?

The answers to these questions show how bias arises. For the first question, the sender chooses

a pooling to minimize utility loss from information compression. This predicts a cutoff structure

for the optimal pooling. The cutoff locations depend on each scenario’s newsworthiness, that is,

its relevance to the decision-maker’s utility, which is determined by its conditional probability and

sensitivity of the best possible payoff on each true state, as well as the elasticities of all these
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terms. The more newsworthy scenarios will be pooled less aggressively, because the sender will

enjoy greater utility improvements if he can distinguish between them.

The answer to the second question is related to the structure of the content (or label) space.

I show that the sender can always label the utility-maximizing pools of scenarios with content

meeting two natural criteria: honesty and self-consistency. The way to do so is to assign adjacent

labels to adjacent pools, in increasing order. I call this strategy the content-generating information

structure. If we view it as a mapping from the scenario space to the content space, then the

variations in pooling aggressiveness described in the previous paragraph create nonlinearity in the

mapping. This nonlinearity manifests as content bias.

Specifically, two types of bias arise: audience appeal and sensationalism. Audience appeal

means the content favors the version of reality preferred or believed by the decision-maker; for

example, if he benefits when the state of nature is positive or has a prior belief that favors the

positive state, then the proportion of positive news is higher in the content than in the underlying

scenario. Sensationalism means the content is more extreme (less balanced between positive and

negative) than the scenario. In my model, these biases are due to information selection; they reflect

the fact that the sender is more willing to devote her limited reporting capacity to distinguishing

between more newsworthy scenarios that are contradictory or moderate for maximizing utility.

Thus, unlike the broader literature, this paper regards content bias as welfare-maximizing, given

the sender’s communication constraints.

For a full structural analysis, I pass to an asymptotic version of the model. This brings several

advantages. First, the asymptotic model is practically relevant: As previously noted, asymptoti-

cally, the fundamental is a conditionally Gaussian signal, and such signals are common as shock

specifications in economic models with learning. Similarly, the content measure—the proportion

of positive signals in the content—is one often used in empirical studies, especially in sentiment

analysis. Second, going asymptotic makes the model more tractable, facilitating interpretation and

analysis by opening up the black box of the content measure. In particular, I show that for many
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common utility functions, the sender’s optimal reporting policy takes a simple form. I find that,

asymptotically, sensationalism is inevitable and audience appeal is common. When the marginal

utility of extreme bets is very high and becomes a dominant force, an alarmist or reverse-appeal

bias is also possible.

The extent of bias depends on the economic context, including parameters such as the decision-

maker’s prior belief, the payoff-relevance of each state, the informativeness of the signals com-

prising the scenario, and the shape of the utility curve. These parameters determine the relative

importance of each scenario and thus affect the sender’s reporting policy. In particular, the prior

and payoff-relevance affect the degree of audience appeal in the content, while increasing infor-

mativeness leads to more sensationalism.

An important feature of my model is the distinction between the literal meaning and the implicit

true meaning of the content. That is, concretely, the content consists of a list of facts. However,

the rational decision-maker, who is aware of the economic context, does not take these facts at face

value. Rather, accounting for the sender’s reporting policy, he discerns the biases in the content and

infers the underlying meaning. This distinction has a practical implication: Researchers analyzing

content data, who stand outside the economic context in which the data were generated, should

consider the context in order to avoid specification errors.

The model has useful applications in many settings. As discussed, it gives a novel rationaliza-

tion for slant in the news media. It also provides micro-foundations for sentiment analysis, a first

in the literature. Furthermore, because it conceptualizes content formation as the compression of

complex information into simple reports, it has implications beyond textual content. For example,

it can be applied to micro-found the analysis of product star ratings or student exam scores.

Literature. To the best of my knowledge, this paper is the first to identify physical communi-

cation capacity as a source of content bias and the first to tractably micro-found content data in

context for potential empirical application. In addition, it provides a novel theoretical framework
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for communication with limited capacity.

My work is related to the literature on media bias as a demand-side phenomenon, which at-

tributes bias to the desire to attract an audience. Seminal papers in this area include those of

Mullainathan and Shleifer (2005), who consider media competing for a heterogeneous audience,

and Gentzkow and Shapiro (2006), who consider the sender’s reputation. Both of these papers re-

quire some heterogeneity in beliefs or preferences. By contrast, I establish the occurrence of bias

without assuming heterogeneity. My paper also connects to work on communication games with

limited attention and bias; see, for instance, Che and Mierendorff (2019) and Perego and Yuksel

(2022).

In methodology, this paper is related to the literature on communication with limited capac-

ity, which is often termed “limited attention” if the capacity limitations are attributed to the re-

ceiver. In common with works on Bayesian persuasion (Kamenica and Gentzkow 2011) with

limited attention (e.g. Gentzkow and Kamenica 2014 and Bloedel and Segal 2021), it discusses

optimal compression and attention allocation; however, it departs from those works by incorporat-

ing a practically motivated capacity limit in place of an information-theoretic one (see Cover and

Thomas 2006 and, e.g., Sims 2003).

This paper models labels. Doing so is crucial for empirical relevance, as real-world content data

are all labels. This feature is novel in the literature on communication games with commitment

(Kamenica and Gentzkow 2011, Bergemann and Morris 2019), which focuses on posteriors and

abstracts away from how labels look. The paper is also connected to the literature on partial

disclosure of information or hard evidence (e.g., Milgrom 1981, Milgrom and Roberts 1986, and

Dye 1985).

The modeling of economic foundations is novel in the extensive and growing empirical liter-

ature on content analysis (see the survey of Gentzkow, Kelly, and Taddy 2019). My approach to

modeling content particularly speaks to studies that use textual frequency measures to investigate

tendencies related to two competing extremes, such as economic boom and bust phases, left-wing
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and right-wing politics, or stability and instability. Examples include Antweiler and Frank (2004),

Tetlock (2007), Tetlock, Saar-Tsechansky, and Macskassy (2008), and Loughran and McDonald

(2011), which use frequencies of linguistic tokens, and Gentzkow and Shapiro (2010) and Baker,

Bloom, and Davis (2016), which use frequencies of articles or covered events. This paper pro-

vides a method of parameterizing a model for content data to extract information from such textual

measures, which addresses a longstanding challenge in the study of content data in context.

The rest of the paper proceeds as follows. In Section II I introduce the baseline model and

illustrate how biases arise. In Section III I take the baseline model to its asymptotic limit and

examine the solution. In Section IV I discuss the model’s implications for media bias and content

analysis. In Section V I extend the model to analyze consumer ratings. Section VI concludes.

II THE BASELINE MODEL

II.A Agents

A sender (she) reports to a decision-maker (he) information about the binary state of nature θ ∈

{0, 1}. The decision-maker has prior belief Pr(θ = 1) = π ∈ (0, 1) and places a bet a ∈ [0, 1] on

the true state, with payoff

u(a; θ) = uθh(1− |a− θ|) =


u1h(a) if θ = 1,

u0h(1− a) if θ = 0,

(1)

where u1,u0 > 0 are payoff-relevance parameters for the two states, and h(·) is an auxiliary func-

tion defined on [0, 1] that captures the closeness between the true state and the bet. I make the

following assumption about h(·).

Assumption 1. (i) The auxiliary function h(·) is twice continuously differentiable, with h′(a) > 0

and h′′(a) < 0 on (0, 1).
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(ii) For any possible posterior π′, a∗ := argmaxa(1− π′)u0h(1− a) + π′u1h(a) ∈ (0, 1).

The assumption h′(a) > 0 implies that the decision-maker is better off the closer his bet is

to the true state. The assumption h′′(a) < 0 reflects the economic benefits of diversification: it

allows for interior actions a ∈ (0, 1) to be relevant. If h′′(a) ≥ 0, then the only possible optimal

actions are a = 0 and a = 1, and so communication is trivial, since the sender has enough reports

at her disposal to perfectly recommend one or the other. Furthermore, part (ii) of Assumption

1 requires that the optimal action is always in the interior. This assumption makes it easier to

illustrate how information compression works. An example of a sufficient condition guaranteeing

this is h′(1) = 0.

The sender shares the preferences and prior belief of the decision-maker; that is, she faithfully

serves his interests. We can justify this in terms of either pure or strategic loyalty. For the latter,

suppose the sender can strategically position her reporting perspective described by us(a; θ) and

πs, and assume her profit from providing information services is increasing in the expected utility

increase that her report adds for the decision-maker. Then obviously it is optimal for her to align

her perspective with the decision-maker’s u(a; θ) and π and aim to maximize his utility. This

sender specification allows us to focus on information compression, without complications related

to persuasion. It also makes the sender’s commitment power irrelevant.

II.B Timing, Information, and Strategy

The timing is as follows: First, the sender receives N binary signals s1, ..., sN ∈ {0, 1} from nature.

She then delivers n (n ≤ N ) binary reported elements r1, ..., rn ∈ {0, 1} to the decision-maker.

Finally, the decision-maker chooses an action a.

A signal si represents a piece of evidence—a potential news story. I refer to a full profile of

signal realizations s = (s1, ..., sN) ∈ {0, 1}N as a scenario. I assume s1, ..., sN are conditionally

independent on θ and Pr(si = θ|θ) = p > 1/2 for every i.
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A reported element ri represents a piece of news that is covered. For now, I do not require re-

ported elements to be truthful. I refer to the full collection of reported elements r = (r1, ..., rn) ∈

{0, 1}n as the content; I assume their order conveys no information. The positive integer n, which

I call the physical constraint, represents the content length and is exogenously given. Note that

such length is a requirement or convention: The sender cannot report more or fewer than n ele-

ments. In practice, newspaper space, broadcast time slots, or norms of report length are capacities

neither exceeded nor partially filled. They may be endogenously determined ex ante under various

considerations, but will be respected once pinned down.

The decision-maker’s problem in the subgame determined by r is to choose the bet a∗(r) that

solves the program

max
a∈[0,1]

E[u(a; θ)|r, {σsr}s∈{0,1}N ,r∈{0,1}n ], (2)

where {σsr}s∈{0,1}N ,r∈{0,1}n is the sender’s information structure and σsr = Pr(r|s). Anticipating

the action a∗(r), the sender chooses an information structure that solves

max
{σsr}

U = E[u(a∗(r; θ))|{σsr}s∈{0,1}N ,r∈{0,1}n ]

s.t. σsr ≥ 0, ∀s ∈ {0, 1}N , r ∈ {0, 1}n;
∑
r

σsr = 1, ∀s ∈ {0, 1}N ;

σsr1 = σsr2 , for r1′1(n×1) = r2
′1(n×1). (3)

The last condition reflects the fact that the order of the reported elements does not matter.

Dimension reduction. This problem looks high-dimensional but can be simplified. Rather than

dealing with the full scenario s = (s1, ..., sN), we can consider the fundamental K :=
∑N

i=1 si as

its sufficient statistic. Since the order of reported elements is assumed irrelevant, given the content

r = (r1, ..., rn) ∈ {0, 1}n, we can consider the report k :=
∑n

i=1 ri. Whereas the full scenario

space and content space are {0, 1}N and {0, 1}n, the spaces of fundamentals and reports are simply

{0, 1, ..., N} and {0, 1, ..., n}. I summarize all the assumptions made about the signal distribution
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in the following Assumption 2(ii) about the fundamental distribution (and (ii) implies (i)).

Assumption 2. (i) The Bayes factor Λ(K) := Pr(K|θ = 1)/Pr(K|θ = 0) is strictly increasing in

K.

(ii) We have K|θ ∼ Bi(N, p) if θ = 1, and K|θ ∼ Bi(N, 1− p) if θ = 0.

Importantly, the fundamental and report can equivalently be represented by any affine trans-

formations of K and k, including K/N and k/n, the proportions of ones in the scenario and the

content. Such affine transformations preserve the equidistant nature of the fundamental and report

sequences and hence do not affect the analysis of biases.

With this simplification, the sender’s information structure can be represented as

{σKk}K=0,...,N ; k=0,...,n, where σKk := Pr(k|K), and the decision-maker’s action can be repre-

sented as a∗(k). The sender finds an information structure {σ∗
Kk} that solves

max
{σKk}

U = E[u(a∗(k); θ)|{σKk}K=0,...,N ; k=0,...,n]

s.t. σKk ≥ 0, ∀K ∈ {0, ..., N}, k ∈ {0, ..., n};
∑
k

σKk = 1, ∀K ∈ {0, ..., N}. (4)

This reformulation of the problem is central to our discussion of strategic information compres-

sion. Intuitively, the sender would like to separate all N+1 possible fundamentals for the decision-

maker; however, she has only n + 1 reports at her disposal, so she must pool some of the funda-

mentals. I call n+ 1 her communication capacity under the physical constraint.

From the perspective of information theory, we can view reports as codewords and the infor-

mation structure as a codebook. The sender’s aim is then to encode the fundamental optimally.

The classical information-theoretic approach (which drives the use of mutual information in the

literature on attention; see, e.g., Sims 2003), is to focus solely on the lengths of codewords, taking

the codewords themselves as meaningless symbols. In contrast, this paper’s approach is tailored to

practical economic contexts in which reports (or content data) are not merely symbols; they have

literal meanings that need to be modeled and are subject to real-world capacity constraints. Note
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that although reports can actually be arbitrary symbols for maximizing utility in (4), in Section

II.D I will give them substance.

II.C Minimizing Compression Loss

To narrow down the search for solutions to the reformulated problem (4), I now characterize the

equilibria of the game. The next three propositions, proved in the appendix, give necessary condi-

tions that the sender must meet to minimize information loss when assembling her report.

First, the sender must use pure strategies. Intuitively, since she is loyal, she has no incentive to

introduce unnecessary noise by using mixed strategies.

Proposition 1 (pure strategy). Under Assumptions 1 and 2(i), σ∗
Kk ∈ {0, 1} for any K, k.

Therefore, the sender’s optimal strategy is to partition the set of fundamentals and map all the

fundamentals in each partition set to the same report. Two questions follow: How many reports

does she use in equilibrium? Which fundamentals does she pool together?

The next proposition states that she must use all available reports.

Proposition 2 (surjection). Under Assumptions 1 and 2(i), for each k there exists K such that

σ∗
Kk > 0.

The intuition here is that each additional report allows the sender to distinguish between more

fundamentals by further refining the pooling structure; thus, reports should not be wasted. In other

words, given a pooling structure (a map of partition sets to reports), if the sender has an extra

report at her disposal, then she can split one of the partition sets into two parts, map one part to

the original report, and map the second part to the new report; this will strictly increase expected

utility. Therefore, an optimal strategy must use all n+ 1 reports.

The last proposition describes how fundamentals are pooled.
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Proposition 3 (cutoff structure). Under Assumptions 1 and 2(i), let {B0, ..., Bn} denote the parti-

tion of the fundamental space corresponding to an optimal information structure {σ∗
Kk}. Then

there exist cutoffs {K∗
1 , ..., K

∗
n} such that B0 = {0, ..., K∗

1}, B1 = {K∗
1 + 1, ..., K∗

2}, ... ,

Bk = {K∗
k + 1, ..., K∗

k+1}, ... , Bn = {K∗
n + 1, ..., N}.

Intuitively, to minimize compression loss, the sender should pool “similar” fundamentals. The

appropriate measure of similarity between two fundamentals turns out to be the closeness of their

Bayes factors; by Assumption 2(i), this implies that an optimal solution involves an ordered parti-

tion, with adjacent fundamentals pooled. Thus, the partition is characterized by n cutoffs separat-

ing the fundamental space into n+ 1 partition sets. The following example visually illustrates this

intuition.

Example 1. Let u(a; θ) = uθ cos
(
ϖ
2
|a− θ|

)
, where ϖ represents the mathematical constant

pi. (This corresponds to setting h(a) = sin
(
ϖ
2
a
)
.) Under Assumption 2(ii), we have Λ(K) =

(p/(1− p))2K−N and the sender’s objective is

U =
∑

0≤i≤n

∥
∑

vK∈Bi

vK∥,

where vK =
(
(1− π)u0C

K
N pN−K(1− p)K , πu1C

K
N pK(1− p)N−K

)
∈ R2, ∥ · ∥ is the Euclidean

norm, and Bi is an element of the partition {B0, ..., Bn}.

Geometrically, each fundamental K can be represented by a vector vK (shown as a blue arrow

in Fig. I). The sender calculates her utility as follows: First, she partitions the collection of all

fundamental vectors into n+1 partition sets. Then, for each partition set, she calculates the vector

sum of all of the fundamentals in that set. We call the resulting vector the representative vector;

its Euclidean length equals the contribution of the fundamentals in that partition set to the sender’s

expected utility. Finally, she calculates the sum of the lengths of all of the representative vectors;

this equals the expected utility.
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[Insert Figure I here.]

To maximize the expected utility, the sender should choose a partition that minimizes the loss

of length caused by summing the vectors in each partition set; thus, she should pool vectors with

similar angles. The angle associated with vK is ã(K) = arctan π
1−π

u1

u0
Λ(K), which is strictly

monotone in Λ(K) and hence in K. Therefore, the sender should pool adjacent K. Figure I

depicts the optimal partition in an example with N = 5.

Note that to maximize expected utility in the reformulated problem (4), it suffices to find an

optimal partition; it does not matter which report is attached to each partition set, as long as each

set gets a distinct report. This means multiple equilibria always exist, as the sender can permute the

reports arbitrarily without affecting utility. The assignment of reports is simply an act of labeling.

In the next section, we refine our perspective by associating reports with meanings.

II.D Connecting Symbols with Substance

In the real world, content data are not arbitrary symbols; readers of a newspaper, for example,

will not accept its action recommendations unless they appear to be fact-based. Consequently,

information intermediaries still insist on presenting evidence in practice when there are other forms

of space-saving communication available, such as merely sending a short unsubstantiated summary

or directly saying the action recommendation. They must frame their reports as a presentation of

reality, able to withstand common-sense scrutiny from their audience.

To give symbols substance, I now introduce two criteria for the content in my model that reflect

common audience expectations of trustworthiness and reliability. The first criterion is (verifiable)

honesty, or the ability to survive fact-checks. This criterion says that reported elements must match

actual signal realizations.
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Definition 1 (the honesty criterion). An information structure is honest if, for each K, any k such

that σKk > 0 satisfies K − (N − n) ≤ k ≤ K.

Importantly, this criterion does not require balanced coverage; it only says that no constituent

piece of the content is fabricated. Suppose N = 100 and n = 50, and the realized scenario consists

of 50 ones and 50 zeros. Then content consisting of 50 ones and no zeros would still be honest,

though plainly biased. Hence the honesty criterion is not difficult to meet.

The second criterion is (logical) self-consistency, which says the sender cannot contradict her-

self. That means the report should be increasing as a function of the fundamental.

Definition 2 (the self-consistency criterion). An information structure is self-consistent if for any

K1, K2 such that K1 < K2, the conditions σK1k1 > 0 and σK2k2 > 0 imply k1 ≤ k2.

Under self-consistency, if one fundamental favors θ = 1 over θ = 0 more than another funda-

mental, then the report on the former fundamental should exhibit more favor for θ = 1 as well. To

interpret this, note that there are two meanings associated with a report: a literal meaning, which

comes from the fact that the content looks like a collection of signals, and a true meaning regarding

the fundamental, which is implied by the information structure. Self-consistency requires the two

meanings to move in the same direction. For instance, suppose θ = 1 and θ = 0 represent good

and bad states of the economy. Self-consistency means that whenever the sender receives better

news about the economy, her report looks more optimistic. Information intermediaries that are not

self-consistent may appear untrustworthy.

Theorem 1, the first main result, says we can refine the equilibria for a desirable label structure.

Theorem 1. Under Assumptions 1 and 2(i), there exists a solution to Eq. (4) that satisfies both

honesty and self-consistency. Furthermore, any solution that satisfies self-consistency also satisfies

honesty.

The proof is straightforward: For any equilibrium, let the optimal partition sets B0, ..., Bn

(given in increasing order, as in Proposition 3) map to the reports 0, ..., n, in that order. This
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information structure is the only self-consistent one under the optimal partition, and it is obviously

honest.

I call this self-consistent optimal information structure the content-generating information

structure. It must exist1, but I have not yet pinned it down by specifying where the optimal cut-

offs are located. The analytical characterization is left for Section III, where I take the discrete

baseline model to an asymptotic limit. For now, we can solve the discrete problem by exhaustively

computing the utilities for all of the ordered partitions.

II.E Two Types of Bias, Illustrated

In the baseline model, bias refers to the difference between k/n and K/N . The discreteness of the

model may contribute to this difference, but this contribution is unimportant and will disappear in

the asymptotic model of Section III. Example 2 illustrates how two basic types of bias may arise

under the content-generating information structure.

Example 2. A newspaper reports to an investor on tomorrow’s market state θ, which is either

boom (1) or bust (0). The investor has access to two assets, one paying off u1 upon boom and

zero upon bust, and the other zero upon boom and u0 upon bust. The investor chooses a portfolio

proxied by a ∈ [0, 1], which represents his position in the former asset when the short-selling

constraint is normalized to 0 and the budget to 1. The market belief for booms is π. The newspaper

editor has N = 5 news stories about the economy, but can publish only n = 3. The content-

generating information structure depends on the contextual economic variables, including π, u1,

u0, p, and the shape of the investor’s utility curve. Here I focus on π, u1, and u0.

Figure II gives an example in which πu1 greatly exceeds (1 − π)u0; that is, the investor

prefers or expects the boom state. In this case, the bias of audience appeal emerges. The content-

generating information structure, shown in the left panel of Fig. II, is given by the partition sets

1. For its existence, see Appendix A. It is also generally speaking unique, in the sense that asymptotically it is
unique by Theorem 2.
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{0}, {1}, {2}, and {3, 4, 5}, which are mapped to the reports 0, 1, 2, and 3, in that order. The right

panel of Fig. II shows the report curve, a plot of k/n against K/N (given here as a scatter plot). In-

terpreting K/N and k/n as the levels of optimism in the scenario and the content, respectively, we

see from the upward tilt of the report curve that the newspaper disproportionately omits negative

stories, appearing to cater to the investor’s belief or preference. For instance, when the scenario is

20% optimistic, with one positive story and four negative stories, the editor omits two of the latter,

making the content 33% optimistic. When the scenario is 60% optimistic, with three positive and

two negative stories, the editor omits both of the latter and publishes 100% optimistic content.

[Insert Figure II here.]

[Insert Figure III here.]

Figure III gives an example in which πu1 and (1 − π)u0 are comparable. Here the bias of

sensationalism emerges. The content-generating information structure has partition sets {0, 1},

{2}, {3} and {4, 5} mapped to the reports 0, 1, 2, and 3, respectively; that is, the newspaper is

either exaggeratedly optimistic or exaggeratedly pessimistic, depending on the direction of the

fundamental. For instance, when the scenario is 80% (20%) optimistic, the content is 100% (0%)

optimistic. When the scenario is 60% (40%) optimistic, the content is 67% (33%) optimistic.

As we see in these examples, the first step in analyzing the bias is to interpret the partition.

The sender chooses the optimal partition by assessing how much the potential knowledge of each

scenario contributes to the decision-maker’s expected utility; this tells her how aggressively to pool

across the fundamental space. The assessment process is rigorously described by Eqs. (7) and (11).

In the example of Fig. II, where πu1 is high, the investor strongly tends to bet close to 1.

Therefore he does not highly value information confirming θ = 1, because such information will

not greatly alter his bet. Rather, he values precise information about scenarios far from θ = 1,

which will make him rethink his bet. Hence the newspaper editor pools optimistic fundamentals
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more aggressively than pessimistic ones.

In the example of Fig. III, where there are no strong audience-appeal effects, the investor is not

very interested in precise information about tail scenarios. There are two reasons for this. First,

the probability of a tail scenario is slim; thus, tail scenarios contribute little to expected utility.

Second, whenever there is a tail scenario, the investor will make a similarly extreme bet regardless

of how precisely the newspaper’s policy distinguishes tail scenarios. Therefore the editor pools tail

scenarios more aggressively than moderate ones.

The second step in analyzing the bias is to examine the mapping of fundamentals to reports.

Two observations are helpful here. First, the highest and lowest fundamentals are respectively

mapped to the highest and lowest reports, without bias. These unbiased reports on end scenarios

provide anchors for the analysis of the middle scenarios. Second, the assignment of reports is more

sensitive to changes in the fundamental for more newsworthy fundamentals (e.g., the pessimistic

ones in our first example, or the moderate ones in our second example) than for less newsworthy

ones. In other words, the same incremental increase in K/N will cause a larger increase in k/n if

K/N is important than if it is unimportant. This variation in sensitivity stems from the variations

in pooling intensity across the fundamental space.

The explanation of bias is now straightforward. Given an interval of highly newsworthy funda-

mentals K/N , the associated range of reports k/n is large (i.e., the report curve is steeper—more

sensitive—there). These newsworthy fundamentals are contradictory to the decision-maker’s pref-

erence or belief (as in Fig. II), so the report range may be so large that it includes less contradictory,

or even confirmatory, reports. Across a fixed range of report values between 0 and 1, less news-

worthy confirmatory fundamentals are associated with even more confirmatory reports. This gives

rise to audience appeal. The newsworthy fundamentals are also moderate (as in Fig. III), so the

report range may be large enough to encompass more extreme reports. Across a fixed report range

between 0 and 1, less newsworthy near-extreme fundamentals are associated with more extreme

reports. This gives rise to sensationalism.
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Three remarks are in order. (1) The report curve, which depicts the relationship between fun-

damentals and reports, is the quantitative representation of the equilibrium. (2) Interestingly, the

report curve also gives the cumulative distribution of cutoffs in the optimal partition. This is be-

cause the report k/n associated with a fundamental K/N can be interpreted as the percentage of

cutoffs occurring below K/N . Intuitively, wherever the report curve has a high slope, the cor-

responding fundamentals are more precisely distinguished, which means there are more cutoffs

appearing in that region. This observation is useful in the asymptotic model of Section III. (3) In

addition to the usual form of audience appeal, an alarmist or reverse-appeal bias is also possible. It

occurs when the marginal utility of extreme actions is extremely high, a situation discussed further

in Section III.

II.F Welfare

Contrary to the conventional wisdom that biases hurt welfare, my model shows that biases may

actually reflect efforts to maximize welfare. The belief that biases hurt welfare is often based on

the presumption that they result from agency problems. This paper points out, however, that they

may arise even in the absence of agency problems, simply to increase communication efficiency

under a capacity constraint. In my model, biases promote the welfare of both the decision-maker

and society, since, in both cases, welfare is measured by the sender’s ex-ante maximized utility.

My results also imply that bias-free communication policies are suboptimal both for the decision-

maker and for social efficiency. Such policies notably include two that are widely accepted as

ethical approaches: (1) The sender produces a report that resembles the fundamental as closely

as possible; (2) the sender fully randomizes her reporting without any deliberate selection. In the

latter case, her ex-ante expected utility is the same as that of choosing n reported elements out of

n signals, since the sender can simply report the first n of the N signals.

The parameters N and n both affect welfare. The maximized utility is strictly increasing in N ,
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because richer fundamental information enables the sender to recommend better actions within the

same communication constraints. The maximized utility is also strictly increasing in n, as a corol-

lary of Proposition 2: Given n1 < n2, the optimal information structure under n1 is suboptimal

under n2, because it fails to make use of an available report. Intuitively, welfare loss comes solely

from compression, and a bigger n implies a smaller loss.

III THE ASYMPTOTIC MODEL

In this section I extend the baseline model to an asymptotic model by letting N and n go to infinity.

This extension has several benefits: First, a large N reflects the abundance of information in the real

world, while a large n reflects the complexity of real-world content data. Second, the asymptotic

model is analytically tractable, with equilibria characterized by smooth functions, which simplifies

the interpretation and empirical analysis.

III.A Model Setup and Solution

The agents are the same as in the baseline model, with utility depending on h(·). I impose the

following assumption, which is analogous to Assumption 1 in the baseline model.

Assumption 3. The function h(·) is six times continuously differentiable. We have h′(a) > 0 and

h′′(a) < 0 on (0, 1).

Note that Assumption 3 requires more smoothness than Assumption 1, since the asymptotic

analysis will involve higher-order derivatives. Also, there is no requirement analogous to Assump-

tion 1(ii). The latter was included in the baseline model simply for convenience, to rule out the

possibility that multiple fundamentals trigger the same action of 1 (or 0). In such cases, the sender

can pool these fundamentals without any information loss, essentially reducing N to a smaller

value N ′. If N ′ > n, then Theorem 1 still applies (since the pool has the most extreme Bayes
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factor). If N ′ ≤ n, no information compression is necessary. This possibility is cumbersome to

include in the baseline model, but straightforward in the asymptotic model, so I do not need to rule

it out here.

Now, let the binary signals si take values in {−σ/
√
N, σ/

√
N} (where σ > 0 is a parameter)

instead of {0, 1}. For a fixed N , this is simply an affine transformation of the signal space; the

resulting information environment is equivalent to the original one. The fundamental K =
∑N

i=1 si

continues to serve as a sufficient statistic for the underlying scenario. Note that K is no longer

necessarily a nonnegative integer; it is is a real number and may be negative.

Let µ > 0 be another parameter, and for each i, assume

Pr

(
si =

σ√
N

∣∣∣∣ θ) =
1

2

(
1 +

µθ

σ
√
N

)
,

where µ1 = µ and µ0 = −µ. This definition relates the probability p from the baseline model to

N . Note that the ratio µ/σ measures how informative each signal is about the state θ. For fixed

N and n, this setup is equivalent to the baseline model, so Propositions 1, 2 and 3 and Theorem 1

apply, and the content-generating information structure is given by n cutoffs in the fundamental

space.

Out of the possible paths by which N and n may go to infinity, I choose the following two-

step process. First, I fix n and let N go to infinity (i.e., the content remains small while the

scenario becomes increasingly complex). For every finite N , the content-generating information

structure is given by n cutoffs in the fundamental space; thus, in the limit as N goes to infinity,

the information structure is given by n cutoffs on the real line (denoted by R). Second, I let n go

to infinity (i.e., the content becomes more sophisticated). Then, the (limiting) content-generating

information structure is characterized by an infinite collection of cutoffs, normalized to a unit

measure, that are continuously distributed on R, forming a cutoff density.

For the first step, with n fixed and N → ∞, the analysis is as follows. By standard arguments
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for infill asymptotics, the fundamental under N , denoted by K(N), satisfies

K(N)|θ ⇒ N(µθ, σ
2),

where ⇒ stands for convergence in law. The limiting fundamental K follows a Gaussian mixture

distribution and is supported on R. The asymptotic analogue to Assumption 2(ii) is thus Assump-

tion 4(ii) below. (As before, (ii) implies (i).)

Assumption 4. (i) The conditional distributions of the fundamental, FK|θ=1 and FK|θ=0, have the

following properties:

(a) They are absolutely continuous and six times continuously differentiable.

(b) The conditional density satisfies fK|θ=1(x) > 0 if and only if x ∈ (K
¯

(1), K̄(1)), and fK|θ=0(x) >

0 if and only if x ∈ (K
¯

(0), K̄(0)), with −∞ ≤ K
¯

(0) ≤ K
¯

(1) < K̄(0) ≤ K̄(1) ≤ +∞.

(c) The likelihood ratio fK|θ=1(x)/fK|θ=0(x) is strictly increasing on (K
¯

(1), K̄(0)).

(d) The range of (1−π)u0h
′(1−a)/πu1h

′(a) for a ∈ (0, 1) is a subset of the range of fK|θ=1(x)/fK|θ=0(x)

for x ∈ (K
¯

(1), K̄(0)).

(ii) We have K|θ ∼ N(µθ, σ
2).

As in the baseline model, content formation and bias are analyzed through the report curve,

which is the same as the cumulative distribution of cutoffs like before. The report curve is defined

as follows. Let {B0, B1, B2, ..., Bn} be the ordered partition used in the content-generating in-

formation structure, and let κ∗(n) = {K∗
1 , ..., K

∗
n} be the corresponding set of cutoffs, so that the

partition is {(−∞, K∗
1), [K

∗
1 , K

∗
2), [K

∗
2 , K

∗
3), ..., (K

∗
n,+∞)}. Define the report curve as

βn(K) =
1

n

∑
K′∈κ∗(n)

1K′≤K . (5)

This curve fully characterizes the equilibrium, with κ∗(n) maximizing the utility

n∑
i=0

{πu1 Pr (K ∈ Bi|θ = 1)h(a∗i )− (1− π)u0 Pr (K ∈ Bi|θ = 0)h(1− a∗i )} . (6)
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For each i, a∗i in Eq. (6) is the recommended action for Bi and hence is subject to

πu1 Pr (K ∈ Bi|θ = 1)

(1− π)u0 Pr (K ∈ Bi|θ = 0)
=

h′(1− a∗i )

h′(a∗i )
.

The sender’s problem is to choose cutoffs for the Gaussian-mixture limiting fundamental. Here

she avoids the complexities arising from the discreteness of the fundamental space in the baseline

model. Note that the equilibrium in the limit as N → ∞ can be viewed as satisfying Propositions 1,

2 and 3, as well as Theorem 1. As in the baseline model, the content-generating information

structure is honest and self-consistent.

For the second step, with n → ∞, the sender seeks to find the curve β∞(K) := limn→∞ βn(K),

which is both the report curve and the cumulative distribution of cutoffs in the limit. The limiting

equilibrium can again be viewed as satisfying Propositions 1, 2 and 3, as well as Theorem 1, and

again it is honest and self-consistent.

Obviously, β∞(K) meets the criteria for being a cumulative distribution function: It is non-

decreasing, right-continuous, and defined on R, with 0 and 1 as its limits at −∞ and ∞. Hence

it induces a canonical probability space (R,B(R),P′), where, for any S ∈ B(R), P′(S) is the

Lebesgue measure of β∞(S). This probabilistic perspective on the report curve has two implica-

tions.

First, in the asymptotic model, the sender’s communication capacity is captured by a unit mea-

sure. In the baseline model, the communication capacity is given by the number of partition sets

n+1, or, equivalently, the n cutoffs dividing them. As n → ∞, this collection of cutoffs determines

a unit measure, which serves as the capacity measure in the limit.

Second, instead of solving for the optimal β∞(K), the sender may solve for its derivative

β′
∞(K), which equivalently characterizes the equilibrium. When β∞(K) is absolutely continuous,

β′
∞(K) can be viewed as the density of cutoffs. I call β′

∞(K) the newsworthiness curve, because

it specifies the importance of each fundamental: If β′
∞(K) is large at a given fundamental K,

that means the sender inserts more cutoffs around that K, which reflects her assessment that K
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deserves more elaborate coverage. This observation echoes and makes rigorous the discussion in

Section II.E on the value of each scenario.

By analogy to the attention allocation curve which appears in the literature on limited attention,

I also refer to β′
∞(K) as the capacity allocation curve: It describes how the sender allocates the

scarce resource of cutoffs across the fundamental space. In fact, although I view the communica-

tion capacity as a constraint binding the sender, it can also be interpreted as a constraint binding

the decision-maker’s information-receiving capacity. In that case, β′
∞(K) can also be named the

attention allocation curve. This novel perspective on capacity or attention is based on an economic

motivation and complements the information-theoretic perspective in the literature.

What is the equilibrium β′
∞(K)? To answer this question, I introduce the perfect-information

optimal action ã(K), which is the decision-maker’s hypothetical best action assuming he knows

K. Let

R(t) =
πu1fK|θ=1(t)

(1− π)u0fK|θ=0(t)
.

In the case h′(1)/h′(0) < R(K) < h′(0)/h′(1), ã(K) ∈ (0, 1) is the solution to R(K) = h′(1 −

ã)/h′(ã). Otherwise, if R(K) ≤ h′(1)/h′(0), then ã(K) = 0; if R(K) ≥ h′(0)/h′(1), then

ã(K) = 1. Under Assumption 4(i)(d), the range of ã(K) includes the interval (0, 1). If, in a

given economic context, some fundamentals induce the extreme action of 1 (or 0), then these

fundamentals can be pooled without loss and mapped to the extreme report of 1 (or 0). Thus it

is only necessary to pin down β′
∞(K) for fundamentals K such that ã(K) ∈ (0, 1). I denote the

interval of such fundamentals by (K
¯
, K̄).

The equilibrium is characterized in Theorem 2, this paper’s second main result.

Theorem 2 (asymptotic capacity allocation). (i) Suppose Assumptions 3 and 4(i) hold. Then on

(K
¯
, K̄),

β′
∞(K) ∝ λh(K)

1
6λF (K)

1
6 ã′(K)

1
2 (7)
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(provided the right-hand side is integrable), where

λh(t) = − (h′(ã(t))h′′(1− ã(t)) + h′(1− ã(t))h′′(ã(t))) ,

λF (t) = F ′′
K|θ=1(t)F

′
K|θ=0(t)− F ′

K|θ=1(t)F
′′
K|θ=0(t).

(ii) Suppose Assumptions 3 and 4(ii) hold. Then

λF (t) ∝ exp

(
− t2

σ2

)
.

Theorem 2 decomposes the newsworthiness curve into three components, which are powers of

λh(K) (the curvature of the utility function), λF (K) (the curvature of the fundamental distribu-

tion), and ã′(K) (the sensitivity of the perfect-information optimal action). In logarithmic form,

Theorem 2 says that the log cutoff density is linear in the logs of λh(K), λF (K), and ã′(K), with

weights of 1/6, 1/6, and 1/2, respectively. The report curve is an antiderivative of β′
∞(K), scaled

to be a cumulative distribution function. The proof of Theorem 2 is in Appendix B.

Another way to present Eq. (7) is to define H1(K) := h(ã(K)), H0(K) := h(1 − ã(K)), and

λH(K) := H ′
1(K)H ′′

0 (K) +H ′′
1 (K)H ′

0(K). Then Eq. (7) says

β′
∞(K) ∝ λH(K)

1
6λF (K)

1
6 .

Theorem 2 makes it easy to calculate β′
∞(K) for many common utility functions. Table I

lists several examples. In some cases the report curve takes a particularly nice form; for instance,

with an exponential utility function, the report curve is the cumulative distribution function for

a truncated N(0, 3σ2) distribution with asymmetric tail cutoffs. For a cosine-difference utility

function, the factor λh(K)
1
6 ã′(K)

1
2 is proportional to a logistic density; for a quadratic utility it

is proportional to a hyperbolic secant density, and for log and power utilities it is proportional to

certain powers of a hyperbolic secant density. Figure IV shows the capacity allocation and report

curves for an example with a cosine-difference utility.

[Insert Table I here.]
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[Insert Figure IV here.]

Importantly, Theorem 2 is not about information revelation, even though it implies that the

limiting equilibrium reporting policy entails no compression loss. In fact, now that the fundamen-

tal and the report take values from two continuums, there exist many one-to-one maps from the

fundamental to the report, and any of them gives a loss-free reporting policy. The real point of

Theorem 2 is that it specifies an economically meaningful one-to-one map—namely, the map that

arises as the limiting solution to the baseline problem in Eq. (4), or to the asymptotic problem in

Eq. (6). The analytical expression in Theorem 2 gives a tractable asymptotic approximation of the

equilibrium information structure solving either Eq. (4) or Eq. (6).

As a final observation, let β−1
∞ be the inverse of β∞ on (K

¯
, K̄), and let Φ be the standard

Gaussian cumulative distribution function. Under Assumption 4(ii), the decision-maker’s posterior

belief on seeing a report ρ ∈ (0, 1) is determined by K = β−1
∞ (ρ), i.e.,

Pr(θ = 1|ρ) =
π exp

(
2µ
σ2β

−1
∞ (ρ)

)
π exp

(
2µ
σ2β−1

∞ (ρ)
)
+ 1− π

.

For ρ = 0 and ρ = 1, the posteriors are respectively

πΦ(K¯ −µ
σ

)

πΦ(K¯ −µ
σ

) + (1− π)Φ(K¯ +µ
σ

)
and

π(1− Φ( K̄−µ
σ

))

π(1− Φ( K̄−µ
σ

)) + (1− π)(1− Φ( K̄+µ
σ

))
.

III.B Factors Determining Capacity Allocation

The three components in Eq. (7), which capture the higher-order curvatures in the problem, fall

into two groups. The first group consists of λF (K)
1
6 , which depends solely on the conditional

distributions of the fundamental; it describes how the likelihood of a scenario directly affects its

newsworthiness. It comes from the optimality condition for a∗i under Assumption 3 and Assump-

tion 4:
FK|θ=1(K

∗
i+1)− FK|θ=1(K

∗
i )

FK|θ=0(K∗
i+1)− FK|θ=0(K∗

i )
=

(1− π)u0h
′(1− a∗i )

πu1h′(a∗i )
≡

fK|θ=1(K̃(a∗i ))

fK|θ=0(K̃(a∗i ))
. (8)
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Here, K̃(a) is the inverse of ã(K) on (K
¯
, K̄) and stands for the perfect-information fundamental

equivalence for a fundamental partition set inducing action a. The second equality in Eq. (8)

follows from the definition of ã(K). This condition implies that the relative location of K̃(a∗i )

within [K∗
i , K

∗
i+1] is2

K̃(a∗i )−K∗
i

K∗
i+1 −K∗

i

≈ 1

2
+

1

24

(
d lnλF (K)

dK

∣∣∣∣K∈[K∗
i ,K

∗
i+1]

)
(K∗

i+1 −K∗
i ). (9)

The second group consists of λH(K)
1
6 = λh(K)

1
6 ã′(K)

1
2 . Intuitively, ã′(K) describes how

sensitive the action is to the fundamental. The term λh(K), which depends on K only through

ã(K), describes how the sensitivity of the action translates to sensitivity of the utility. By the

optimality condition for K∗
i ,

h(a∗i )− h(a∗i−1)

h(1− a∗i )− h(1− a∗i−1)
=

(1− π)u0fK|θ=0(ã(K
∗
i ))

πu1fK|θ=1(ã(K∗
i ))

≡ h′(ã(K∗
i ))

h′(1− ã(K∗
i ))

,

the position of ã(K∗
i ) within [a∗i−1, a

∗
i ], or equivalently that of K∗

i within [K̃(a∗i−1), K̃(a∗i )], is

K∗
i − K̃(a∗i−1)

K̃(a∗i )− K̃(a∗i−1)
≈ 1

2
+

1

24

(
d lnλH(K)

dK

∣∣∣∣K∈[K̃(a∗i−1),K̃(a∗i )]

)
(K̃(a∗i )− K̃(a∗i−1)). (10)

Clearly, to study how a unit measure’s worth of cutoffs are distributed across the real line, it

suffices to study their relative allocation between any two neighborhoods. Locally, for a cutoff K∗
i

to lie near a high concentration of other cutoffs, it should be closer to K̃(a∗i ) than the next cutoff

K∗
i+1 is, while K̃(a∗i ) in turn may need to be closer to K∗

i+1 than the more distant K̃(a∗i+1) is.

Hence, both 1
24

d lnλF (K)
dK

and 1
24
(d lnλH(K)

dK
) matter in characterizing local relative cutoff concentra-

tion between nearby neighborhoods. Then, for two neighborhoods K1 and K2 located apart from

each other, their relative cutoff allocation can be calculated by properly aggregating these charac-

terizations of local concentrations for all the in-between neighborhoods, an exercise that leads to

Theorem 2.

2. Eq. (9) and Eq. (10) are respectively variants of Eq. (B.3) and Eq. (B.4).
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What is the intuitive economic interpretation of λF (K) and λH(K)? Notice that

λF (K) = fK|θ=0(K)fK|θ=1(K)

(
ln

fK|θ=1(K)

fK|θ=0(K)

)′

, λH(K) = H ′
0(K)H ′

1(K)

(
ln

H ′
1(K)

H ′
0(K)

)′

.

That is, λF (K) is increasing in the two conditional likelihoods and the elasticity of the likelihood

ratio, while λH(K) is increasing in the two conditional value sensitivities and the elasticity of the

value sensitivity ratio. Each of the latter can be further decomposed into a utility sensitivity term

and an action sensitivity term, ã′(K), via the chain rule. These terms fully describe newsworthi-

ness, with Eq. (7) becoming

β′
∞(K) ∝ fK|θ=0(K)

1
6fK|θ=1(K)

1
6

(
ln

fK|θ=1(K)

fK|θ=0(K)

)′ 1
6

H ′
0(K)

1
6H ′

1(K)
1
6

(
ln

H ′
1(K)

H ′
0(K)

)′ 1
6

. (11)

III.C Characterizing Bias in the Report Curve

Audience appeal. To identify the audience-appeal bias in the reporting policy, I compare the

location of β′
∞(K) with the “midpoint” of the fundamental space. It is appropriate to take this

midpoint to be zero, since it is zero for any finite N . Relative to zero, the more β′
∞(K) leans

against the direction given by the sign of πu1

(1−π)u0
− 1, the more the reporting policy should be

viewed as biased toward that direction. Let K1/2 denote the quantity −σ2

2µ
ln πu1

(1−π)u0
, which solves

ã(K) = 1/2 under Assumption 4(ii). Its sign is opposite to that of πu1

(1−π)u0
− 1.

Definition 3. The reporting policy β∞(K) is strongly appealing if β′
∞(K) ≥ β′

∞(−K), and

strongly alarmist if β′
∞(K) ≤ β′

∞(−K), for any K such that KK1/2 > 0.

This is a strong definition: If a strongly appealing β∞(K) is the distribution of some random

variable, then its mean (if well-defined), its median, and the average of its upper and lower αth

percentiles for any α all have the same sign as K1/2.

What is the source of the audience-appeal bias? Under Assumption 4(ii), λF (K)
1
6 is propor-

tional to a Gaussian N(0, 3σ2) density and does not skew. Hence bias comes from λh(K)
1
6 ã′(K)

1
2 .
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Its shape is described in Proposition 4.3

Proposition 4. Under Assumptions 3 and 4(ii), the following hold:

(i) ã(K) is symmetric about (K1/2,
1
2
), and ã′(K) is symmetric about K = K1/2;

(ii) λh(K) is symmetric about K = K1/2.

Proposition 4 implies that β′
∞(K) is proportional to the product of two symmetric curves:

λF (K)
1
6 , which is symmetric about zero, and λh(K)

1
6 ã′(K)

1
2 , which is symmetric about K1/2.

This insight leads to Proposition 5, which gives sufficient conditions for the strongly appealing

and strongly alarmist properties.

Proposition 5. Assume the integrability of the right-hand side of Eq. (7). Under Assumptions 3

and 4(ii), the following hold:

(i) β∞(K) is strongly appealing if λh(K)
1
6 ã′(K)

1
2 is hump-shaped, i.e., increasing on (K

¯
, K1/2)

and decreasing on (K1/2, K̄);

(i*) β∞(K) is strongly alarmist if λh(K)
1
6 ã′(K)

1
2 is U-shaped, i.e., decreasing on (K

¯
, K1/2) and

increasing on (K1/2, K̄);

(ii) λh(K)
1
6 ã′(K)

1
2 is hump-shaped (U-shaped) if and only if, for a < 1

2
,

d

da

(
h′(a)3h′(1− a)3

(−h′(1− a)h′′(ã)− h′′(1− a)h′(a))2

)
≥ (≤) 0; (12)

(iii) λh(K)
1
6 ã′(K)

1
2 is hump-shaped if both h′′(a)

h′(a)
and h′′′(a)

h′(a)
are decreasing in a.

The conditions in Proposition 5 involve only h and are simple to verify. Many common util-

ity functions, including cosine-difference, quadratic, log, power (with γ ≤ 2), and exponential

utilities, satisfy Proposition 5(i), and all of these except for the log and power utilities satisfy

Proposition 5(iii).

Intuitively, Proposition 5 states that the report curve is strongly appealing whenever customiz-

ing extreme action recommendations is not too important to the overall utility from the perspective

3. The proofs of Propositions 4, 5 and 6 are in Appendix C.
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of λh(K)
1
6 ã′(K)

1
2 . Notice that ã′(K) is always hump-shaped, meaning the action recommendation

is not sensitive to fundamentals near the extremes. Hence, for λh(K)
1
6 ã′(K)

1
2 to be hump-shaped,

λh(K) must not explode too rapidly near extreme scenarios. This means λh(K) may itself be

hump-shaped, so that customizing extreme action recommendations has little importance; or it

may explode but at a rate controllable by ã′(K), so that the product λh(K)
1
6 ã′(K)

1
2 is still hump-

shaped. In the latter situation, customizing extreme action recommendations is highly valuable

due to high marginal utility, but nevertheless contributes little to newsworthiness since the action

recommendation has little sensitivity to the scenario.

Example 3. Consider the constant relative risk-aversion (CRRA) utility functions h(a) = a1−γ

1−γ

(γ > 0 and γ ̸= 1) and h(a) = ln(a) (γ = 1). The relative risk-aversion γ captures the curvatures

of these utilities.

Figure V shows λh(K)
1
6 ã′(K)

1
2 and β′

∞(K) for various γ. The tails of λh(K)
1
6 tend to zero for

γ ≤ 1 but explode for γ > 1. When γ ≤ 2, the behavior of ã′(K)
1
2 prevails over that of λh(K)

1
6 ,

and the product λh(K)
1
6 ã′(K)

1
2 satisfies Proposition 5(i), implying the strongly appealing property.

When γ > 2, however, λh(K)
1
6 prevails and λh(K)

1
6 ã′(K)

1
2 is U-shaped, fitting Proposition 5(i*).

Now, β′
∞(K) is given by λF (K)

1
6 times λh(K)

1
6 ã′(K)

1
2 . Because λh(K)

1
6 ã′(K)

1
2 is symmetric

about K1/2 and is bigger for fundamentals farther from K1/2, it scales up λF (K) more for K with

an opposite sign to K1/2, making the capacity allocation curve somewhat larger at confirmatory K

values. This leads to an interesting alarmist bias for high γ values.

[Insert Figure V here.]

Ultimately, the bias type depends on Eq. (12), which can be rewritten as

d

da
lnh′(a) +

d

da
lnh′(1− a) +

(
−2

d

da
ln

(
d

da
ln

h′(1− a)

h′(a)

))
≥ (≤) 0.

The first two terms on the left-hand side are the elasticities for the conditional marginal utilities,

which express a type of “level sensitivity” that measures the absolute stakes of trembling at a.
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Their sum is negative for utilities with non-increasing absolute risk-aversion, which include all

of the examples in Table I. The sign reflects a fear of choosing a near zero, rather than near 1
2
,

because of concerns about loss coming from betting extreme. The third term is minus twice the

elasticity of the elasticity of the conditional marginal utility ratio, a type of “ratio sensitivity” that

measures the relative stakes of trembling at a in alternative states. For the utilities in Table I it

is positive, capturing the importance of learning information in order to customize actions near

1
2
. This ratio sensitivity dominates the level sensitivity for many utilities, leading to the strongly

appealing property. On the other hand, for CRRA utilities with γ > 2, the opposite occurs, leading

to the strongly alarmist property.

Sensationalism. Under Assumption 4(ii) and with integrability in Theorem 2, sensationalism

is inevitable. Sensationalism can be described as the sender’s dumping two vast regions of tail

scenarios into two small bins of extreme reports; more precisely, it occurs when the slope of the

report curve becomes very small as K tends to ±∞. Essentially, the source of sensationalism is the

structural assumption that N greatly exceeds n as these quantities tend to infinity. This assumption

also determines the proper rescaling of fundamentals and reports used for the asymptotic exercise.

The model predicts that sensationalism is inevitable as long as the complexity of the scenario is far

greater than an information intermediary can represent, however nuanced her reports may be—a

feature of many real-world situations.

Of the three factors in Theorem 2, ã′(K)
1
2 and λF (K)

1
6 promote sensationalism with their

well-behaved tails while λh(K)
1
6 may work for or against it, depending on the tail behavior of the

utility.

30



III.D Contextual Effects

Report distribution. While other variables may be latent, the report is observable. Under As-

sumption 4(ii), the conditional distribution of the report ρ is
Pr(ρ = 0|θ) = Φ

(
K
¯
−µθ

σ

)
if ρ = 0,

ρ|θ ∼ Φ
(

β−1
∞ (ρ)−µθ

σ

)
if ρ ∈ (0, 1),

Pr(ρ = 1|θ) = 1− Φ
(

K̄−µθ

σ

)
if ρ = 1,

(13)

and its unconditional distribution is a mixture with mixing probability π.

Below I discuss the effects of several contextual parameters on the report curve and distribution

under Assumption 4(ii), in which case λH(K) depends on K only via ã(K), or equivalently via

2µ
σ2K.

Definition 4 compares the degrees of audience appeal or alarmism in report curves.

Definition 4. The report curve β
(1)
∞ (K) leans more positive than another report curve β

(2)
∞ (K) if

β
(2)
∞ (K) has first-order stochastic dominance (FOSD) over β(1)

∞ (K).

Relative payoff relevance u1/u0. Obviously, u1 and u0 are not separately identifiable in report

data. The term u1/u0, which is separately identifiable from π as is discussed later, affects the report

distribution through the report curve. Consider u(1)
1 /u

(1)
0 > u

(2)
1 /u

(2)
0 with corresponding report

curves β(1)
∞ (K) and β

(2)
∞ (K). Then for cosine-difference, quadratic, log, and power (γ < 2) utili-

ties, the “likelihood ratio” β(1)′
∞ (K)/β

(2)′
∞ (K) is strictly decreasing, so that β(2)

∞ (K) has FOSD over

β
(1)
∞ (K) and thus β(1)

∞ (K) leans more positive. For an exponential utility, it is trivial that β(1)
∞ (K)

leans more positive. In such situations, the reporting policy will lean more towards the state that

has higher payoff relevance. By contrast, for a power utility with γ > 2, β(1)′
∞ (K)/β

(2)′
∞ (K) is

strictly increasing and so β
(1)
∞ (K) leans less positive.

When β
(1)
∞ (K) leans more positive, the conditional and unconditional report distributions for

u
(1)
1 /u

(1)
0 have FOSD over the corresponding report distributions for u

(2)
1 /u

(2)
0 . This is because
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β
(1)
∞ (K) ≥ β

(2)
∞ (K) by the FOSD order of report curves, implying β

(1)−1
∞ (ρ) ≤ β

(2)−1
∞ (ρ) and

K
¯
(1) ≤ K

¯
(2) in Eq. (13).

Belief π. The belief has two effects on the report distribution. First, it affects the report curve in

the same way as u1/u0. Second, it equals the mixing probability. The latter means π and u1/u0

are separately identifiable in report data.

Suppose π(1) > π(2) and β
(1)
∞ (K) leans more positive than β

(2)
∞ (K). Then the conditional report

distributions under π(1) have FOSD over those under π(2), by reasoning analogous to that used for

u1/u0. The unconditional report distribution under π(1) also has FOSD over the one under π(2),

because, as well as the fact that both conditional distributions are higher in the former, the mixture

gives more weight to the conditional distribution for θ = 1 which is higher.

Informativeness µ/σ. The parameters µ and σ are not separately identifiable in report data,

although their ratio µ/σ, which captures how informative nature’s signals are, may be. To see this,

consider setting 1 with parameters µ(1) and σ(1) and setting 2 with parameters µ(2) = Cµ(1) and

σ(2) = Cσ(1), where C is a constant. Then a fundamental K(1) = K in setting 1 is equivalent

to the fundamental K(2) = CK in setting 2, for any K. That is, K(1) and K(2) are the same

quantiles in their respective conditional distributions and also have the same report. Therefore,

the conditional and unconditional report distributions in both settings are the same. Essentially,

applying an affine transformation to the fundamental space does not change the problem; what

matters is the standardized fundamental K/µ. For the same reason, to identify the fundamental

K = β−1
∞ (ρ) corresponding to some observed ρ ∈ (0, 1), we must first pin down either µ or σ,

which we can do without loss of generality.

Informativeness contributes to sensationalism. For instance, let h satisfy Proposition 5(i), and

fix µ. Let σ tend to zero. Then the hump-shaped curves λH(K)
1
6 and λF (K)

1
6 concentrate their

masses around K = 0, and the limit of the curve β∞(K) becomes extremely sensationalist.
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Proposition 6. Assume the integrability of the right-hand side of Eq. (7). Under Assumptions 3

and 4(i), we have β∞(K) → 0 for K < 0 and β∞(K) → 1 for K ≥ 0 as σ → 0, if λh(K)
1
6 ã′(K)

1
2

is hump-shaped.

This happens because high informativeness makes the state very clear for side scenarios, so the

sender allocates most capacity in the intermediate region of the fundamental space, creating high

sensitivity of the report to the fundamental. Consequently, the conditional report distributions tend

to a mass of one at 0 and 1, respectively, and the unconditional distribution, a mixture of the two,

is highly dispersed.

Utility. Proposition 5 and Example 3 outline the effects of the choice of utility function: The

utility affects the shape of λH(K) and thus changes the bias implications of the other contextual

parameters.

IV IMPLICATIONS: INTUITION AND METHODOLOGY

This paper makes two major contributions. First, it offers a novel perspective on content bias—a

phenomenon relevant to business, politics, and everyday life—by relating it to a simple, practically

motivated information selection mechanism. Second, it provides a micro-foundation for content

analysis. In the literature, the study of content data is generally limited to reduced-form analysis or

data mining, which makes it difficult to see beyond the literal meaning of the content, to account

for the environment in which it was produced, and to rigorously interpret the methodology and

results of the analysis. I address this gap by proposing a tractable model of content formation.

As a tool for structural analysis of content, my model has four important features. (1) It is not

a black box; rather, it is based on a common content formation mechanism. (2) It distinguishes

between the literal meaning and the underlying true meaning of the content, while linking both

to the context. This allows the researcher, as a third-party observer, to interpret the content from
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the perspective of its intended audience, within the original economic environment. (3) The model

clearly shows contextual effects. (4) The conditionally Gaussian fundamental and the sentiment-

or frequency-based content measure match specifications frequently seen in the literature.

Scope of applicability. This model applies to any form of content with the following character-

istics: (1) The content facilitates decision-making by presenting information about two competing

hypotheses. (2) The content is subject to fairly rigid length limits, necessitating information selec-

tion. (3) The analysis is not focused on audience heterogeneity or agency issues.

Media reports are an obvious example of such content. Other examples include briefings for

busy decision-makers, consultancy reports, filings publishing information, and essays that selec-

tively present evidence for argumentation.

IV.A Media Bias

Media outlets often produce narratives that skew reality. Demand-side theories of bias (see, e.g.,

Suen 2004, Mullainathan and Shleifer 2005, or Gentzkow and Shapiro 2006) attribute this to the

incentive to satisfy an audience, and they all require some form of discrepancy between the beliefs

or preferences of the agents.

This paper proposes a novel demand-side framework in which bias arises from information

selection, independent of any such discrepancies, and rationalizes slant and media narratives. A

media outlet’s coverage may exhibit bias simply because its editors select the pieces that will

convey the most useful information, given the audience’s preferences and beliefs and the size

constraints of the platform. In particular, the biases of audience appeal and sensationalism may

arise simply as manifestations of optimal communication efficiency as tacitly agreed on by the

outlet and its audience, not as the result of any intention to mislead or pander to the audience.

For instance, the state θ may be the subject of conflicting assertions of fact by left- and right-

wing politicians, and individuals may then consult a newspaper for information about the true
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state in order to choose a policy to support. Suppose an individual has more confidence in the

rightist view, or will benefit more if it is true. To help such an individual maximize his utility, the

newspaper’s selection of stories should be biased toward the rightist view. The same, of course, ap-

plies for leftist readers. In addition, to maximize communication efficiency, the newspaper should

exaggerate the direction (left or right) of the evidence available to it.

Should we worry about such biases in media coverage? The model says no. Of course, it

assumes full rationality, which may not hold in the real world, and it disregards other possible

channels for bias, as well as sociological and cultural factors. Nonetheless, it provides a perspective

on why the existence of bias may be reasonable.

IV.B Empirical Implications

Data and model preparation. In practice, content data usually need to be quantified, or tok-

enized, for analysis (see the survey of Gentzkow, Kelly, and Taddy 2019). Tokenization is the

division of the full content into basic tokens—such as events, pieces of evidence, or phrases—that

correspond to the content elements in a model. For example, in my model, each token should

correspond to a reported element ri supporting one realization of the state over the other.

One feature of such tokenization is the irrelevance of the order of tokens. My model assumes

that the relative locations of reported elements (e.g., news stories) carry no information, as long

as they appear in the same piece of content (e.g., the same newspaper). This is a rather strong

assumption if, for example, our content is a text and the tokens are individual phrases. However,

similar assumptions are common in the empirical literature—for example, in the bag-of-words

approach to textual analysis.

Example 4 illustrates how results such as Theorem 2 and Eq. (13) can help us establish a

structural model given a concrete problem.

Example 4. Consider an investor with CRRA utility u(w) = 1
1−γ

w1−γ for a portfolio worth w,
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who allocates one dollar between two categories of assets: the A category, which returns RA,1 in a

boom (θ = 1) and RA,0 in a bust (θ = 0), and the B category, which returns RB,1 in a boom and

RB,0 in a bust. So that neither asset is dominant, assume RA,1 > RB,1 and RA,0 < RB,0. (These

returns are parameters that can be calibrated using real-world data, e.g., data on mean returns for

certain universes of assets in a boom or a bust.) The investor shares the market belief π in the

likelihood of a boom. A financial newspaper targeting him reports on a conditionally Gaussian

shock K. To match this setup to the model, let

h(a) =
1

1− γ
(a+ C)1−γ , u1 = (RA,1 −RB,1)

1−γ, and u0 = (RB,0 −RA,0)
1−γ,

where

C =
1

2

(
RB,1

RA,1 −RB,1

+
RB,0

RB,0 −RA,0

− 1

)
≥ 0.

Then K
¯
= −γσ2

2µ
ln 1+C

C
≥ −∞ and K̄ = γσ2

2µ
ln 1+C

C
≤ ∞. By Theorem 2,

β′
∞(K) ∝ exp

(
−K2

6σ2

)(
(πu1)

1
γ exp

(
µ

γσ2
K

)
+ ((1− π)u0)

1
γ exp

(
− µ

γσ2
K

)) γ−2
3

,

which is the distribution for the power case in Table I, truncated to (K
¯
, K̄).

Parameter identification from report data. As previously noted, the parameters that may be

identifiable from report data include π, u1/u0, µ/σ, and certain parameters governing the shape of

the utility function given its form. For a fixed µ or σ, we can extract the fundamental underlying

a given report. If also given the data of proxies for other parameters or for the fundamental, we

may have access to not just the marginal report distribution but the joint distribution, in which case

Theorem 2 and Eq. (13) will enable us to parameterize a model accounting for context changes.

Sentiment analysis and model (mis-)specification. My model is particularly relevant for sen-

timent analysis. Conventional sentiment research proceeds in two steps. The first is to define a

measure based on the frequency of certain elements in the content data (for instance, the propor-

tion of negative words in a text, or of positive stories in a collection). This measure may be called
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something like the sentiment, tone, attitude, or pessimism; it is seen as a proxy for variables such

as beliefs, preferences, or fundamentals. The second step is to perform regressions or data mining

using that measure. In this process, however, it is often unclear exactly how information is embed-

ded in the measure, which makes interpretation difficult. My paper speaks to this issue, since the

reports k/n closely resemble a frequency measure.

The model in this paper predicts that a sentiment measure (or other frequency measure) derived

from content data is actually a nonlinear combination of fundamentals, preferences, and beliefs.

This means that researchers performing sentiment analysis should carry out an intermediate step:

Rather than directly analyzing the measured sentiment data, they should extract the quantities of

interest from these data. For instance, a researcher who wants to study a text-based fundamental

K should estimate a model which predicts K before the second step, or integrate the textual model

with the second step and do a full analysis. If she skips this intermediate step, she risks misspeci-

fication, e.g., by confusing the report k (or ρ) with the fundamental (or shock) K, or with learning

outcomes, such as the posterior or the action.

One potential source of misspecification is the nonlinearity of the report curve. Suppose a

researcher mistakes the sentiment (i.e., the report) for the shock and uses it to explain a shock

proxy y (consisting of the shock plus noise) in a regression. Sensationalism predicts that the

impact of extreme shocks on y is overstated compared to that of moderate shocks, because

∂E[y|K]

∂ρ
=

∂E[y|K]

∂K

∂K

∂ρ
,

where ∂K/∂ρ is large for extreme shocks and small for moderate shocks. The audience-appeal

(alarmist) bias predicts that the impact of confirmatory (contradictory) shocks becomes obscure.

With audience appeal, for instance, a report that is over 50% confirmatory may represent both

confirmatory shocks and some moderately contradictory shocks. If an indicator variable of over

50% confirmatory sentiment is used to explain a shock proxy in a regression, the significance and

magnitude may both be mitigated. If such an indicator is for contradictory sentiment, however, the
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significance and magnitude may both be exaggerated.

Misspecification may also occur if contextual variables are not properly accounted for when

the context changes. Consider for instance a dataset in which some data are generated under a high

u1/u0 and others under a low u1/u0. Then, even if we assume that the data-generating process for

the fundamental is the same, the reports will have different conditional means on the two contexts.

Therefore, if a researcher mistakes the sentiment for the shock and tries to use it to explain a

variable y that is related to the payoff relevance u1/u0 but orthogonal to the shock, she may find a

spurious significance in regressing y on the sentiment and reach a false conclusion.

V BEYOND CONTENT: AN ANALYSIS OF RATINGS

My model also applies to non-content forms of data, such as product star ratings.

Consider a customer (she) who rates her experience of a product on a five-star scale (k =

0, ..., 4) for the benefit of a later shopper (he). The product’s type θ is either good (1) or bad (0).

The customer experience K is a random variable whose conditional distributions on θ satisfy the

monotone likelihood ratio property. The later shopper observes the rating and chooses an action a,

which stands for the probability or amount of purchase. Both agents’ preferences and beliefs are

aligned.

While a star rating is not a summary of reported elements as in my original model, this prob-

lem is similar in structure to the earlier problem and can be solved using a slight adjustment of the

model. It is natural to assume that the customer experience K is highly complex, so the assign-

ment of a star rating k to it involves significant information compression; that is, as before, the

fundamental space is much larger than the report space.

For simplicity, as in the baseline model, I start by assuming the fundamental space is a fi-

nite set of integers. Importantly, Propositions 1, 2 and 3 extend to this problem, because their

proofs do not depend on the specific distributions of the signals si or even K, but only on the
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strict monotone likelihood ratio property of K|θ. Therefore the consumer’s information structure

(or rating strategy) is a pure strategy, surjective, and characterized by cutoffs. To find the opti-

mal (“rating-generating”) information structure, we can impose self-consistency (which is natural

since, in practice, customers give higher ratings for better experiences). Next I let the fundamental

space become dense and satisfy (i) or (ii) of Assumption 4. The report curve is then obtained by

numerically solving Eq. (6), or approximated using Theorem 2.

My results help explain why real-world ratings often look skewed. For example, if a product

has many five- and four-star ratings but few low ratings, it may be that customers go in expecting it

to be good, or benefit more from purchasing a good product than from avoiding the purchase of a

bad product, so that they overrate even moderately positive experiences and thus have more lower

star ratings available to distinguish between bad experiences. A highly dispersed distribution of

ratings may indicate that customer experience is highly informative about quality.

My model can also be extended to study, for example, students’ exam scores as a reflection of

their skill, with the scores serving as input for a decision-maker’s choices.

Essence of the model. This extension reveals the model’s essential mathematical structure. The

fundamental values and the report values form equidistant sequences. An information structure is

an increasing mapping from the fundamental to the report that takes the lowest (highest) funda-

mental to the lowest (highest) report. That mapping must involve some monotone pooling, and

the sender’s problem is to pool in a way that maximizes the expected utility. Such pooling creates

non-linearity in the mapping, which manifests as various interesting phenomena in practice.

VI CONCLUDING REMARKS

This paper identifies information selection due to physical capacity constraints as a cause of content

bias, including audience appeal and sensationalism, and gives asymptotic characterizations of these

phenomena. Bias stems from the sender’s strategy of compressing fundamental information based
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on its newsworthiness. In particular, bias in my model does not mislead the receiver and improves

welfare.

The content generation channel I model is independent of any discrepancies between the

agents’ preferences or payoffs. If such discrepancies are of concern in a real-world problem, other

persuasion-related channels may also be in place. In that case, the optimal information structure

may involve mixed strategies, and the criteria of honesty and self-consistency may conflict or con-

strain optimization. However, this paper’s findings remain relevant if information selection is also

a concern.

Importantly, my model distinguishes between the content’s literal meaning and its underlying

true meaning, while connecting the two via a tractable and smooth function that incorporates pa-

rameters capturing the economic context. It can be applied in many settings involving information

selection, including the study of media slant, sentiment analysis (and other forms of content anal-

ysis involving frequency measures), and ratings analysis. It may also be useful in strengthening

empirical analyses of content data, by helping researchers account for contextual factors and avoid

specification errors.

Author Affiliation: City University of Hong Kong.

40



Appendix: Content Bias and Information Compression

Jinge Liu

A Propositions 1, 2, and 3

Let pK := Pr(K|θ = 1), qK := Pr(K|θ = 0). The posterior beliefs are π′
k := Pr(θ = 1|k) =

π Pr(k|θ = 1)/Pr(k). Hence the ex-ante utility is

U =
n∑

k=0

Pr(k) {π′
ku1h(a

∗(k)) + (1− π′
k)u0h(1− a∗(k))}

=
n∑

k=0

{π Pr(k|θ = 1)u1h(a
∗(k)) + (1− π) Pr(k|θ = 0)u0h(1− a∗(k))} :=

n∑
k=0

Uk,

where a∗(k) is argmaxa π
′
ku1h(a) + (1 − π′

k)u0h(1 − a) if
∑

K σKk > 0, and may be any value

otherwise. The domain of U is [0, 1](N+1)×(n+1) for {σKk}K=0,...,N ;k=0,...,n. The utility is continuous

on a compact set, so there always exists a solution to maximizing this utility.

Proofs of Propositions 1 and 2. We will show that Proposition 1′, below, implies Proposition 2,

which in turn implies Proposition 1.

Proposition 1′. Under Assumption 1, there exists a pure-strategy equilibrium.

Proof of Proposition 1′. For σKk,

∂U

∂σKk

=
∂Uk

∂σKk

=
∂Uk({σKk}K=0,...,N , a

∗(k))

∂σKk

+
∂Uk({σKk}K=0,...,N , a

∗(k))

∂a∗(k)

∂a∗(k)

∂σKk

=
∂Uk({σKk}K=0,...,N , a

∗(k))

∂σKk

(by optimality of a∗(k))

= πu1pKh(a
∗(k)) + (1− π)u0qKh(1− a∗(k)). (A.1)

The optimality of a∗(k) for k such that
∑

K σKk > 0 is characterized by the first-order condition
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0 = π′
ku1h

′(a)− (1− π′
k)u0h

′(1− a). By the implicit function theorem,

∂a∗(k)

∂σKk

= − πu1pKh
′(a∗(k))− (1− π)u0qKh

′(1− a∗(k))

πu1(
∑N

K′=1 pK′σK′k)h′′(a∗(k)) + (1− π)u0(
∑N

K′=1 qK′σK′k)h′′(1− a∗(k))
.

Hence,

∂2U

∂σ2
Kk

= (πu1pKh
′(a∗(k))− (1− π)u0qKh

′(1− a∗(k)))
∂a∗(k)

∂σKk

(A.2)

= − (πu1pKh
′(a∗(k))− (1− π)u0qKh

′(1− a∗(k)))2

πu1(
∑N

K′=1 pK′σK′k)h′′(a∗(k)) + (1− π)u0(
∑N

K′=1 qK′σK′k)h′′(1− a∗(k))
,

which is ≥ 0 since h′′(·) < 0. Also,
∂2U

∂σKk1∂σKk2

= 0, (A.3)

implying that ∂U/∂σKk does not depend on σKk′ for k′ ̸= k.

Suppose σ∗
Kk1

∈ (0, 1) is in an optimal information structure. Then there must exist σ∗
Kk2

∈

(0, 1). Both
∑

K σ∗
Kk1

> 0 and
∑

K σ∗
Kk2

> 0 hold, so Eqs. (A.2) and (A.3) hold. Writing U for

U(σKk1 , σKk2), we consider the following cases.

Case (i): ∂U
∂σKk1

|σ∗
Kk1

̸= ∂U
∂σKk2

|σ∗
Kk2

(without loss of generality, we may assume ∂U
∂σKk1

|σ∗
Kk1

> ∂U
∂σKk2

|σ∗
Kk2

).

Then for a small ε, σ∗∗
Kk1

= σ∗
Kk1

+ ε and σ∗∗
Kk2

= σ∗
Kk2

− ε will improve U . This is because

∂U
∂σKk1

is continuous in σKk1 , as is ∂U
∂σKk2

in σKk2 ; thus there exists ε > 0 such that ∂U
∂σKk1

|σ∗
Kk1

+ε′ >

∂U
∂σKk2

|σ∗
Kk2

−ε′ for all ε′ ∈ (0, ε]. The utility increase from changing to σ∗∗
Kk1

and σ∗∗
Kk2

isU(σ∗∗
Kk1

, σ∗∗
Kk2

)−

U(σ∗
Kk1

, σ∗
Kk2

) = U(σ∗∗
Kk1

, σ∗∗
Kk2

)−U(σ∗∗
Kk1

, σ∗
Kk2

)+U(σ∗∗
Kk1

, σ∗
Kk2

)−U(σ∗
Kk1

, σ∗
Kk2

), which equals∫ ε

0
∂U

∂σKk1
|σ∗

Kk1
+ε′dε

′ −
∫ ε

0
∂U

∂σKk2
|σ∗

Kk2
−ε′′dε

′′ > 0 by Eq. (A.3). This contradicts optimality.

Case (ii): ∂U
∂σKk1

|σ∗
Kk1

= ∂U
∂σKk2

|σ∗
Kk2

, and there is no δ > 0 such that both ∂2U
∂σ2

Kk1

= 0 on (σ∗
Kk1

−

δ, σ∗
Kk1

+ δ) and ∂2U
∂σ2

Kk2

= 0 on (σ∗
Kk2

− δ, σ∗
Kk2

+ δ); assume without loss that ∂2U
∂σ2

Kk1

> 0 on

(σ∗
Kk1

, σ∗
Kk1

+ δ0]. Then σ∗∗
Kk1

= σ∗
Kk1

+ δ0 and σ∗∗
Kk2

= σ∗
Kk2

− δ0 will improve U . Here is

why: The utility increase is U(σ∗∗
Kk1

, σ∗∗
Kk2

)− U(σ∗
Kk1

, σ∗
Kk2

) = U(σ∗∗
Kk1

, σ∗∗
Kk2

)− U(σ∗∗
Kk1

, σ∗
Kk2

) +

U(σ∗∗
Kk1

, σ∗
Kk2

)−U(σ∗
Kk1

, σ∗
Kk2

), which equals U(σ∗
Kk1

, σ∗∗
Kk2

)−U(σ∗
Kk1

, σ∗
Kk2

)+U(σ∗∗
Kk1

, σ∗
Kk2

)−
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U(σ∗
Kk1

, σ∗
Kk2

) by Eq. (A.3). Define a continuous function f by f(x) := U(σ∗
Kk1

, σ∗
Kk2

+ x) if

x ∈ [−δ0, 0] and f(x) := U(σ∗
Kk1

+ x, σ∗
Kk2

) if x ∈ (0, δ0]; then f is convex on [−δ0, δ0] and strictly

convex on (0, δ0]. The utility increase is f(δ0) + f(−δ0) − 2f(0), which is positive by Jensen’s

inequality, contradicting optimality.

Case (iii): ∂U
∂σKk1

|σ∗
Kk1

= ∂U
∂σKk2

|σ∗
Kk2

, and there exists δ > 0 such that both ∂2U
∂σ2

Kk1

= 0 on (σ∗
Kk1

−

δ, σ∗
Kk1

+ δ) and ∂2U
∂σ2

Kk2

= 0 on (σ∗
Kk2

− δ, σ∗
Kk2

+ δ). Then one of the following two cases will occur.

Case (iii-a): ∂2U
∂σ2

Kk1

> 0 or ∂2U
∂σ2

Kk2

> 0 somewhere on (0, σ∗
Kk1

+ σ∗
Kk2

); assume without loss that for

some constant σ0 ∈ (σ∗
Kk1

, σ∗
Kk1

+ σ∗
Kk2

), ∂2U
∂σ2

Kk1

> 0 when σKk1 ∈ (σ0, σ∗
Kk1

+ σ∗
Kk2

), ∂2U
∂σ2

Kk1

= 0

when σKk1 ∈ (σ∗
Kk1

, σ0], and ∂2U
∂σ2

Kk2

= 0 when σKk2 ∈ (σ∗
Kk2

− (σ0 − σ∗
Kk1

), σ∗
Kk2

). Letting

σ0
Kk1

= σ0 and σ0
Kk2

= σ∗
Kk2

− (σ0 − σ∗
Kk1

), we get a new information structure falling under case

(ii), with the same utility. Applying the reasoning of case (ii) by taking σ0
Kk1

and σ0
Kk2

as the new σ∗
Kk1

and σ∗
Kk2

, we get a contradiction to optimality.

Case (iii-b): ∂2U
∂σ2

Kk1

= 0 and ∂2U
∂σ2

Kk2

= 0 for σKk1 , σKk2 ∈ (0, σ∗
Kk1

+σ∗
Kk2

). Let σ∗∗
Kk1

= σ∗
Kk1

+σ∗
Kk2

and σ∗∗
Kk2

= 0.

Case (iii-b-1): σ∗
Kk1

+σ∗
Kk2

= 1. In this case, the new strategy has the same utility with no mixing for

K . If there is no mixing for any other fundamental K ′, then we have found a pure strategy that delivers

the same utility as the optimal mixed strategy. If some other K ′ has mixing, then let K ′ be the new K

and iterate the discussion of cases (i)–(iii).

Case (iii-b-2): σKk∗1
+ σKk∗2

< 1. Then there exists k3 such that σ∗
Kk3

∈ (0, 1). Let k3 be the new k2

and iterate the discussion of cases (i)–(iii).

Hence the only case in which the existence of mixing is plausible is (iii-b-1). An equilibrium mixed

strategy exists only when it delivers the same utility as a pure strategy. Therefore, a pure-strategy

equilibrium always exists.

Lemma 1. Under Assumptions 1 and 2(i), the equilibrium involves either a pure strategy, or a mixed

strategy that yields the same utility as a pure strategy in which
∑

K σKk = 0 for some k.
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Proof of Lemma 1. From the proof of Proposition 1′, mixing can occur only in case (iii-b-1), when

σ∗
Kk1

+ σ∗
Kk2

= 1. In that case, ∂U/∂σKk1 is constant, so a∗(k1) is constant with respect to σKk1 by

Eq. (A.1). Hence, by the first-order condition, σKk1 does not affect π′
k1
/(1 − π′

k1
). Since the values

of pK/qK differ across K, we have σK′k1 = 0 for all K ′ ̸= K . The same applies to k2; thus K is the

only fundamental value that maps to k1 or k2. Therefore the utility-equivalent pure strategy must have

either
∑

K σ∗∗
Kk1

= 0 or
∑

K σ∗∗
Kk2

= 0; i.e., some k ends up unused.

Proof of Proposition 2. By Proposition 1′ and Lemma 1, it suffices to consider pure-strategy equilibria.

The proof is by contradiction. Suppose, in a pure-strategy equilibrium,
∑

K σKk1 = 0. Then N + 1

fundamentals are mapped to at most (n+ 1)− 1 = n ≤ N reports, so some report is associated with

m ≥ 2 fundamentals. Let k2 be such a report, representing the set of fundamentals {K(1), ..., K(m)}.

The contribution of k2 to the utility is Uk2 , and the optimal action for k2 is a∗(k2). Consider an

alternative pure strategy in which K(1) is mapped to k1, {K(2), ..., K(m)} is mapped to k2, and the rest

of the strategy is unchanged. Let U ′
k1

and U ′
k2

denote the contributions of k1 and k2 to the utility, and

a′∗(k1) and a′∗(k2) the optimal actions. Then

Uk2 = Pr
(
K ∈ {K(1), ..., K(m)}

)
E[u(a∗(k2); θ)|K ∈ {K(1), ..., K(m)}]

= Pr
(
K ∈ {K(1), ..., K(m)}

)
E[E[u(a∗(k2); θ)|1̃K=K(1) ]|K ∈ {K(1), ..., K(m)}]

< Pr
(
K ∈ {K(1), ..., K(m)}

)
E[E[max

a
u(a; θ)|1̃K=K(1) ]|K ∈ {K(1), ..., K(m)}]

= Pr
(
K = K(1)

)
E[u(a′∗(k1); θ)|K = K(1);K ∈ {K(1), ..., K(m)}]+

...+ Pr
(
K ∈ {K(2), ..., K(m)}

)
E[u(a′∗(k2); θ)|K ̸= K(1), K ∈ {K(1), ..., K(m)}]

= U ′
k1
+ U ′

k2
,

where 1̃K=K(1) is a random variable that equals 1 when K = K(1) and 0 otherwise. The inequality

is strict because a∗(k2), a′∗(k1) and a′∗(k2) cannot coincide, since pK/qK is strictly monotone. This

contradicts optimality.
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Proof of Proposition 1. Proposition 2 rules out the mixed-strategy case in Lemma 1.

Proof of Proposition 3. Let xK = πu1pK and yK = (1 − π)u0qK . Each K is fully characterized

by (xK , yK). Let ηK := yK
xK

= π
1−π

u1

u0
Λ(K).

Lemma 2. Let Assumption 1 hold, let the fundamental space be {K0, ..., KN} with all ηKi
different,

denote the optimal partition by {Bk}nk=0, and suppose Bn consists of m ≥ 2 fundamentals (by Propo-

sition 2, m ≤ N − n + 1). Define the fundamental v by xv =
∑

K∈Bn
xK and yv =

∑
K∈Bn

yK .

Then, for the alternative problem with fundamental space {K0, ..., KN}∪ {v}\Bn and n+1 reports,

the optimal partition is {Bk}n−1
k=0 ∪ {{v}}.

Proof of Lemma 2. Under the partition {Bk}nk=0, the utility is

U =
n∑

k=0

{( ∑
K∈Bk

xK

)
h(a∗(k)) +

( ∑
K∈Bk

yK

)
h(1− a∗(k))

}
,

where a∗(k) is determined by the conditional probabilities of fundamentals through
∑

K∈Bk
xK/

∑
K∈Bk

yK .

Therefore, any utility delivered by a feasible partition of {K0, ..., KN} ∪ {v}\Bn can be delivered by

a feasible partition of {K0, ..., KN}, specifically by replacing v, in the partition set of {K0, ..., KN}∪

{v}\Bn containing v, by all of the elements of Bn. That is, the utilities obtained by partitioning

{K0, ..., KN} ∪ {v}\Bn form a subset of those obtained by partitioning {K0, ..., KN}. Therefore, if

{Bk}nk=0 is optimal, then {Bk}n−1
k=0 ∪ {{v}}, as a partition of {K0, ..., KN} ∪ {v}\Bn that delivers

the same utility, must be optimal.

Proof of Proposition 3. The proof is by induction. Let P (N, n) be the problem of choosing n reported

elements from N signals. We want to show that the solution of P (N, n) involves an ordered partition

of the fundamental space. We first induct from the base cases P (2, 1) and P (3, 1) to establish the

assertion for P (N, 1), then deduce it for P (N, n).

Step 1. We prove that the solution to P (N, 1) involves an ordered partition.

Step 1.1. Here we prove that the solution to P (2, 1) involves an ordered partition.
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The proof is by contradiction. Consider the following strategy: (1) The fundamentals 0, 1, 2 map

to k0 with probabilities 1−s, 0, 1− t respectively; the optimal action is a. (2) The fundamentals 0, 1, 2

map to k1 with probabilities s, 1, t respectively; the optimal action is b. Thus,

U = ((1− s)x0 + (1− t)x2)h(a) + ((1− s)y0 + (1− t)y2)h(1− a) + ...

+ (sx0 + x1 + tx2)h(b) + (sy0 + y1 + ty2)h(1− b).

We need to show that s = t = 0 is a suboptimal strategy. By the envelope theorem,

∂U

∂s
= x0(h(b)− h(a)) + y0(h(1− b)− h(1− a)), (A.4)

∂U

∂t
= x2(h(b)− h(a)) + y2(h(1− b)− h(1− a)). (A.5)

We consider two cases.

Case (i): a ̸= b at s = t = 0. Then as long as one of the two partial derivatives is positive at s = 0

or t = 0—say, ∂U
∂s
|s=0 > 0—the pure strategy at s = t = 0 is strictly worse than a strategy with a

small positive s. But the latter is a mixed strategy and thus suboptimal by Proposition 1. Therefore we

only need to show that Eq. (A.4) or Eq. (A.5) is positive. We do so by contradiction. Suppose both

Eq. (A.4) and Eq. (A.5) are nonpositive at s = t = 0. Then η1 =
h′(b)

h′(1−b)
by the optimality of b. On the

other hand, if a > b, then

η2 ≤
h(a)− h(b)

h(1− b)− h(1− a)
=

(h(a)− h(b))/(a− b)

(h(1− b)− h(1− a))/((1− b)− (1− a))

by Eq. (A.5), so η1 < η2 ≤ (h(a)−h(b))/(a−b)
(h(1−b)−h(1−a))/((1−b)−(1−a))

. Since h(·) is strictly increasing and concave,

we have h(a)−h(b)
a−b

< h′(b) and h(1−b)−h(1−a)
(1−b)−(1−a)

> h′(1− b); hence η1 <
h′(b)

h′(1−b)
, a contradiction. And if

a < b, then

η0 ≥
h(a)− h(b)

h(1− b)− h(1− a)
=

(h(a)− h(b))/(a− b)

(h(1− b)− h(1− a))/((1− b)− (1− a))

by Eq. (A.4), and hence, by analogous arguments, η1 >
h′(b)

h′(1−b)
, a contradiction.
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Case (ii): a = b at s = t = 0. Then ∂U
∂s
|s=0 = ∂U

∂t
|t=0 = 0. The utility is U |s=t=0 = (x0 + x1 +

x2)h(a) + (y0 + y1 + y2)h(1 − a). Consider the strategy at s = t = 1. By the optimality of a and

b, y0+y2
x0+x2

= h′(a)
h′(1−a)

= h′(b)
h′(1−b)

= y1
x1

, so h′(a)
h′(1−a)

= h′(b)
h′(1−b)

= y0+y1+y2
x0+x1+x2

. Therefore, for s = t = 1, the

optimal action is also a. The utility satisfies U |s=t=1 = U |s=t=0. However, the strategy at s = t = 1

does not use both reports and thus is suboptimal by Proposition 2. Hence the strategy at s = t = 0 is

also suboptimal. This completes Step 1.1.

Step 1.2. Prove that the solution to P (3, 1) involves an ordered partition.

The proof is by contradiction. The possible non-ordered partitions {Bk}1k=0 are {{1}, {0, 2, 3}},

{{2}, {0, 1, 3}}, {{0, 3}, {1, 2}}, and {{0, 2}, {1, 3}}. Below we examine each.

Case (i): {{1}, {0, 2, 3}} or {{2}, {0, 1, 3}} is optimal. Suppose without loss of generality that

{{1}, {0, 2, 3}} is optimal. Consider another problem with fundamentals {0, 1, v}, where v is defined

by xv = x2 + x3 and yv = y2 + y3. By Lemma 2, the optimal partition must be {{1}, {0, v}}.

However, the problem is P (2, 1), and since η0 < η1 < ηv, by Step 1.1, {{1}, {0, v}} is suboptimal

because it is not ordered, a contradiction.

Case (ii): {{0, 3}, {1, 2}} is optimal. Consider another problem with fundamentals {0, v, 3} where v

is defined by xv = x1+x2 and yv = y1+y2. By Lemma 2, the optimal partition must be {{v}, {0, 3}}.

However, the problem is P (2, 1), and since η0 < ηv < η3, by Step 1.1, {{v}, {0, 3}} is suboptimal

because it is not ordered, a contradiction.

Case (iii): {{0, 2}, {1, 3}} is optimal. We consider three cases.

Case (iii-a): a > b. Consider the following strategy: (1) The fundamentals 0, 1, 2, 3 map to k0

with probabilities 1, s, 1 − t, 0 respectively; the optimal action is a. (2) The fundamentals 0, 1, 2, 3

map to k1 with probabilities 0, 1− s, t, 1 respectively; the optimal action is b. Then

U = (x0 + sx1 + (1− t)x2)h(a) + (y0 + sy1 + (1− t)y2)h(1− a) + ...

+ ((1− s)x1 + tx2 + x3)h(b) + ((1− s)y1 + ty2 + y3)h(1− b).
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We need to show that s = t = 0 is a suboptimal strategy. By the envelope theorem,

∂U

∂s
= x1(h(a)− h(b)) + y1(h(1− a)− h(1− b)),

∂U

∂t
= −x2(h(a)− h(b))− y2(h(1− a)− h(1− b)).

As in Step 1.1, it now suffices to show that one of the two partial derivatives is positive at s = 0 or

t = 0. Suppose both are nonpositive; then η2 ≤ h(a)−h(b)
h(1−b)−h(1−a)

≤ η1, contradicting the assumption that

η2 > η1.

Case (iii-b): a < b. Consider the following strategy: (1) The fundamentals 0, 1, 2, 3 map to k0

with probabilities 1 − t, 0, 1, s respectively; the optimal action is a. (2) The fundamentals 0, 1, 2, 3

map to k1 with probabilities t, 1, 0, 1− s respectively; the optimal action is b. Then

U = ((1− t)x0 + x2 + sx3)h(a) + ((1− t)y0 + y2 + sy3)h(1− a) + ...

+ (tx0 + x1 + (1− s)x3)h(b) + (ty0 + y1 + (1− s)y3)h(1− b).

We need to show that s = t = 0 is a suboptimal strategy. By the envelope theorem,

∂U

∂s
= x3(h(a)− h(b)) + y3(h(1− a)− h(1− b)),

∂U

∂t
= −x0(h(a)− h(b))− y0(h(1− a)− h(1− b)).

As in Step 1.1, it suffices to show that one of the two partial derivatives is positive at s = 0 or

t = 0. Suppose both are nonpositive; then η3 ≤ h(a)−h(b)
h(1−b)−h(1−a)

≤ η0, contradicting the assumption that

η3 > η0.

Case (iii-c): a = b. Consider the same strategy as (iii-a). Then ∂U
∂s
|s=0 =

∂U
∂t
|t=0 = 0. The utility

is U |s=t=0 = (x0 + x1 + x2 + x3)h(a) + (y0 + y1 + y2 + y3)h(1 − a). By the optimality of a and

b, y0+y2
x0+x2

= h′(a)
h′(1−a)

= h′(b)
h′(1−b)

= y1+y3
x1+x3

, and hence h′(a)
h′(1−a)

= h′(b)
h′(1−b)

= y0+y1+y2+y3
x0+x1+x2+x3

. Therefore, the

alternative strategy with the partition {{0, 1, 2, 3},∅} yields the same optimal actions and utility as

s = t = 0. However, it does not use both reports, so by Proposition 2 it is suboptimal. Hence the
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strategy at s = t = 0 is also suboptimal. This completes Step 1.2.

Step 1.3. Given that the solution to P (N − 1, 1) involves an ordered partition, prove that the solution

of P (N, 1) involves an ordered partition (for N ≥ 4).

The proof is by contradiction. Suppose the optimal partition {B0, B1} for P (N, 1) is not ordered.

We consider two cases.

Case (i): There exist neighboring fundamentals i, i+ 1 ∈ B0 (or B1; here we pick B0 without loss of

generality). In this case, let v be a fundamental and (xv, yv) = (xi + xi+1, yi + yi+1). Then Λ(i) <

Λ(v) < Λ(i+ 1). Consider the P (N − 1, 1) problem of partitioning {0, 1, ..., i− 1, v, i+ 2, ..., N}.

Since {B0, B1} is optimal, by Lemma 2 the solution has to be {B′
0, B

′
1} where B′

0 = B0∪{v}\{i, i+

1} and B′
1 = B1. However, this is not an ordered partition, a contradiction.

Case (ii): There are no patterns as in case (i), i.e. B0 = {0, 2, 4, ...} and B1 = {1, 3, 5, ...}. Let v

be a fundamental and (xv, yv) = (x0 + x2, y0 + y2). Then Λ(v) < Λ(2). Consider the P (N − 1, 1)

problem of partitioning {v, 1, 3, 4, ..., N}. Since {B0, B1} is optimal, by Lemma 2 the solution has to

be {B′
0, B

′
1} with B′

0 = B0 ∪ {v}\{0, 2} and B′
1 = B1. However, Λ(v) < Λ(3) < Λ(4), so this is

not an ordered partition, a contradiction.

By Steps 1.1, 1.2, and 1.3, P (N, 1) has ordered-partition solutions.

Step 2. Prove that the solution to P (N, n) involves an ordered partition.

The problem is to partition {0, 1, ..., N} into n + 1 sets. Denote the solution by {B0, ..., Bn}.

For any 0 ≤ i, j ≤ n (i ̸= j), set Bi = {Ki
1, K

i
2, ..., K

i
mi
} and Bj = {Kj

1 , K
j
2 , ..., Kj

mj
} and

consider the problem P (mi + mj, 1) with fundamental space {Ki
1, K

i
2, ..., K

i
mi
, Kj

1 , K
j
2 , ..., K

j
mj
}.

Since {B0, ..., Bn} is optimal, the solution has to be {Bi, Bj} to avoid contradiction. By Step 1, the

latter is an ordered partition. Therefore, for any two partition sets in {B0, ..., Bn}, there is a cutoff

such that the two partition sets lie on different sides of it. This implies that {B0, ..., Bn} is an ordered

partition.
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B Theorem 2

Lemma 3 (properties of ã(K)). Under Assumptions 3 and 4(i),

(i) ã(K) is well-defined, strictly increasing, and five times continuously differentiable on (K
¯
, K̄),

(ii) for any n, a∗0 < ã(K∗
1) < a∗1 < ã(K∗

2) < ... < ã(K∗
n) < a∗n, and

(iii) κ∗(n) ⊂ (K
¯
, K̄) ⊂ (K

¯
(1), K̄(0)) for all n.

Proof of Lemma 3. (i) The function ã(K) is implicitly determined by

fK|θ=1(K)

fK|θ=0(K)
=

(1− π)u0h
′(1− a)

πu1h′(a)
.

Because ∂
∂a
h′(1 − a)/h′(a) ̸= 0 on (0, 1), by the implicit function theorem, ã(K) is well-defined on

(K
¯
, K̄) and inherits the smoothness of LHS minus RHS, so it is five times continuously differentiable.

(By an analogous argument, K̃(a), the inverse of ã(K) on (0, 1), is also well-defined and five times

continuously differentiable.) By Assumption 4(i)(c), the left-hand side is strictly increasing in K . By

Assumption 3, the right-hand side is strictly increasing in a. Hence ã(K) is strictly increasing.

(ii) Given a partition interval (K1, K2), its optimal action a∗ satisfies

Pr(K ∈ (K1, K2)|θ = 1)

Pr(K ∈ (K1, K2)|θ = 0)
=

(1− π)u0h
′(1− a)

πu1h′(a)
.

The right-hand side is strictly increasing in a. The left-hand side lies in
(

fK|θ=1(K1)

fK|θ=0(K1)
,
fK|θ=1(K2)

fK|θ=0(K2)

)
by

Assumption 4(i)(c). Hence, ã(K1) < a∗ < ã(K2). This result applies to all partition sets.

(iii) The optimal action a∗0 for (−∞, K∗
1) satisfies a∗0 > 0, so ã(K∗

1) > 0, i.e., K∗
1 > K

¯
. Similarly,

for (K∗
n,+∞), a∗n < 1, so ã(K∗

n) < 1, i.e., K∗
n < K̄.

Lemma 4 (cutoffs are dense in the limit). Under Assumptions 3 and 4(i),

(i) lim
n→∞

max
K∗

i ,K
∗
i+1∈κ∗(n)

|K∗
i+1 −K∗

i | = 0, and

(ii) lim
n→∞

K∗
1 = K

¯
, lim

n→∞
K∗

n = K̄.

Proof of Lemma 4. Let v(a,K1, K2) := Pr(K ∈ (K1, K2))E[u(a; θ)|K ∈ (K1, K2)], v∗(K1, K2) :=
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maxa v(a,K1, K2), and denote the optimal action on (K1, K2) by a(K1, K2).

The proof is by contradiction. For Lemma 4(i), suppose there exists δ > 0 such that for a subse-

quence {nj},

max
K∗

i ,K
∗
i+1∈κ∗(nj)

|K∗
i+1 −K∗

i | > δ.

By a slight abuse of notation, let (K∗
i , K

∗
i+1) denote the longest interval in the partition given by κ∗(nj).

Using the cutoff set κ∗(nj)∪{(K∗
i+1+K∗

i )/2} improves κ∗(nj) by at leastw := minK∈(K
¯
,K̄−δ) v

∗(K,K+

δ/2) + v∗(K + δ/2, K + δ) − v∗(K,K + δ). By Assumptions 3 and 4(i)(c), a(K,K + δ/2) and

a(K + δ/2, K + δ) cannot coincide for any K . Hence w > 0.

For Lemma 4(ii), I present the proof for K
¯

. Suppose there exists K ′ > K
¯

such that for a subse-

quence {nj}, K∗
1 > K ′. Define K∗∗ as (K

¯
+K ′)/2 if K

¯
> −∞ and K ′ − 1 if K

¯
= −∞. Using

the cutoff set κ∗(nj)∪ {K∗∗} improves κ∗(nj) by at least w′ := infnj
v∗(K

¯
, K∗∗) + v∗(K∗∗, K∗

1)−

v∗(K
¯
, K∗

1) ≥ (v∗(K
¯
, K∗∗)−v(a(K

¯
, K∗

1), K¯
, K∗∗))+infnj

{v∗(K∗∗, K∗
1)−v(a(K

¯
, K∗

1), K
∗∗, K∗

1)} >

0. Here the inequality > holds because by Assumptions 3 and 4(i)(c), a(K
¯
, K∗∗) and a(K

¯
, K∗

1) cannot

coincide.

Let κ̂1(n1), κ̂2(n2) ⊂ (K
¯
, K̄) be any two cutoff sets satisfying κ̂1(n1) ⊂ κ̂2(n2), with expected

utility levels Û1 and Û2. Obviously, Û1 ≤ Û2, Û2 ≤ M := h(1)max{u0, u1} < +∞, and Û1 ≥

m := maxa πu1h(a)+(1−π)u0h(1−a) > −∞. Hence Û2−Û1 ≤ M−m. Under nj , let κ̂2(n2) be

κ∗(nj) and let κ̂1(n1) be {K∗
i ∈ κ∗(nj)|i is even}. Then, setting K∗

0 := K
¯

and K∗
n+1 := K̄ , we get

Û2 − Û1 =
∑

t=1,...,⌊(nj+1)/2⌋ νt, where νt = v∗(K∗
2t−2, K

∗
2t−1) + v∗(K∗

2t−1, K
∗
2t) − v∗(K∗

2t−2, K
∗
2t)

for t < ⌊(nj + 1)/2⌋ and νt = v∗(K∗
2t−2, K

∗
2t−1) + ... + v∗(K∗

nj
, K̄) − v∗(K∗

2t−2, K̄) for t =

⌊(nj + 1)/2⌋. Each νt is nonnegative, and since M−m is the upper bound, mint νt ≤ 2(M−m)/nj .

As nj → ∞, 2(M − m)/nj → 0, so mint νt → 0. Therefore, given w or w′, there exists ñj

such that mint νt is less than w or w′. Let this minimum be achieved at t̃. Thus, the cutoff set

κ∗(ñj)∪{(K∗
i +K∗

i+1)/2}\{K∗
2t̃−1

} improves on κ∗(ñj) by at least w−mint νt > 0, a contradiction
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that proves Lemma 4(i). The cutoff set κ∗(ñj) ∪ {K∗∗}\{K∗
2t̃−1

} improves on κ∗(ñj) by at least

w′ −mint νt > 0, a contradiction that proves Lemma 4(ii).

Proof of Theorem 2. By Lemma 4, it suffices to show that the functions

β̂n(a) =


βn(K

∗
i ) +

βn(K∗
i+1)−βn(K∗

i )

K∗
i+1−K∗

i
(K −K∗

i ) if K ∈ [K∗
i , K

∗
i+1),

βn(K∗
1 )

K∗
1−K

¯̄
(K −K

¯̄
) if a ∈ (K

¯
, K∗

1), 0 if K ≤ K
¯̄
, 1 if a ≥ K∗

n

converge, where K
¯̄
:= max{K

¯
, K∗

1 − 1}. β̂n(K) are absolutely continuous cumulative distribution

functions. By the theorem in Scheffé (1947), it suffices to show their densities,

bn(a) =


βn(K∗

i+1)−βn(K∗
i )

K∗
i+1−K∗

i
if K ∈ [K∗

i , K
∗
i+1),

βn(K∗
1 )

K∗
1−K

¯̄
if K ∈ (K

¯̄
, K∗

1), 0 otherwise,

converge pointwise to some limiting density almost everywhere. We proceed in two steps.

Step 1. Find the target density. By Lemma 3, we can define K̃ : (0, 1) → (K
¯
, K̄) as the inverse

function of ã(K) on (K
¯
, K̄). To simplify notation, let t1(K) = h(ã(K)), t0 = h(1 − ã(K)),

Ii = K∗
i+1 − K∗

i , and Ji = K̃(a∗i ) − K̃(a∗i−1). Then the first-order conditions for a∗i and K∗
i are

respectively
F1(K

∗
i+1)− F1(K

∗
i )

F0(K∗
i+1)− F0(K∗

i )
=

F ′
1(K̃(a∗i ))

F ′
0(K̃(a∗i ))

, (B.1)

t1(K̃(a∗i ))− t1(K̃(a∗i−1))

t0(K̃(a∗i ))− t0(K̃(a∗i−1))
=

t′1(K
∗
i )

t′0(K
∗
i )
. (B.2)

In (B.1), Taylor-expanding F1(K
∗
i+1), F1(K

∗
i ), F0(K

∗
i+1), and F0(K

∗
i ) to fourth order at K̄i :=

(K∗
i+1 +K∗

i )/2 and F0(K
∗
i+1) and F0(K

∗
i ) to first order at K̄i, we get

K̃(a∗i )− K̄i =
1

24

F ′′′
0 (K̄i)F

′
1(K̄i)− F ′′′

1 (K̄i)F
′
0(K̄i)

F ′
1(K̄i)F ′′

0 (K̄i)− F ′
0(K̄i)F ′′

1 (K̄i)
J2
i +

R1 +R2 +R3 +R4 +R5 +R6

F ′
1(K̄i)F ′′

0 (K̄i)− F ′
0(K̄i)F ′′

1 (K̄i)

:=Γ(K̄i)I
2
i +Rema

i , where (B.3)
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R1 = C1(F
′
0(K̄i)F

′′′
1 (Kd)− F ′

1(K̄i)F
′′′
0 (K ′

d)) × (K̃(a∗i )− K̄i)
2,

R2 = C2(F
′′′
0 (K̄i)F

′′
1 (K̄i)− F ′′′

1 (K̄i)F
′′
0 (K̄i) × I2i (K̃(a∗i )− K̄i),

R3 = C3(F
′′′
0 (K̄i)F

′′′
1 (Kd)− F ′′′

1 (K̄i)F
′′′
0 (K ′

d)) × I2i (K̃(a∗i )− K̄i)
2,

R4 = C4((F
(5)
0 (K ′′

c )− F
(5)
0 (K ′′′

c ))F
′
1(K̄i)− (F

(5)
1 (Kc)− F

(5)
1 (K ′

c))F
′
0(K̄i)) × I4i ,

R5 = C5((F
(5)
0 (K ′′

c )− F
(5)
0 (K ′′′

c ))F
′′
1 (K̄i)− (F

(5)
1 (Kc)− F

(5)
1 (K ′

c))F
′′
0 (K̄i)) × I4i (K̃(a∗i )− K̄i),

R6 = C6((F
(5)
0 (K ′′

c )− F
(5)
0 (K ′′′

c ))F
′′′
1 (Kd)− (F

(5)
1 (Kc)− F

(5)
1 (K ′

c))F
′′′
0 (K ′

d)) × I4i (K̃(a∗i )− K̄i)
2.

In (B.2), Taylor-expanding t1(K̃(a∗i )), t1(K̃(a∗i−1)), t0(K̃(a∗i )), and t0(K̃(a∗i−1)) to fourth order at

¯̄Ki := (K̃(a∗i ) + K̃(a∗i−1))/2 and t′1(K
∗
i ) and t′0(K

∗
i ) to first order at ¯̄Ki, we get

K∗
i − ¯̄Ki =

1

24

t′′′0 (
¯̄Ki)t

′
1(

¯̄Ki)− t′′′1 (
¯̄Ki)t

′
0(

¯̄Ki)

t′1(
¯̄Ki)t′′0(

¯̄Ki)− t′0(
¯̄Ki)t′′1(

¯̄Ki)
I2i +

S1 + S2 + S3 + S4 + S5 + S6

t′1(
¯̄Ki)t′′0(

¯̄Ki)− t′0(
¯̄Ki)t′′1(

¯̄Ki)
(B.4)

:=T ( ¯̄Ki)J
2
i +RemK

i , where

S1 = C1(t
′
0(

¯̄Ki)t
′′′
1 (Kdd)− t′1(

¯̄Ki)t
′′′
0 (K

′
dd)) × (K∗

i − ¯̄Ki)
2,

S2 = C2(t
′′′
0 (

¯̄Ki)t
′′
1(

¯̄Ki)− t′′′1 (
¯̄Ki)t

′′
0(

¯̄Ki)) × J2
i (K

∗
i − ¯̄Ki),

S3 = C3(t
′′′
0 (

¯̄Ki)t
′′′
1 (Kdd)− t′′′1 (

¯̄Ki)t
′′′
0 (K

′
dd)) × J2

i (K
∗
i − ¯̄Ki)

2,

S4 = C4((t
(5)
0 (K ′′

cc)− t
(5)
0 (K ′′′

cc))t
′
1(

¯̄Ki)− (t
(5)
1 (Kcc)− t

(5)
1 (K ′

cc))t
′
0(

¯̄Ki)) × J4
i ,

S5 = C5((t
(5)
0 (K ′′

cc)− t
(5)
0 (K ′′′

cc))t
′′
1(

¯̄Ki)− (t
(5)
1 (Kcc)− t

(5)
1 (K ′

cc))t
′′
0(

¯̄Ki)) × J4
i (K

∗
i − ¯̄Ki),

S6 = C6((t
(5)
0 (K ′′

cc)− t
(5)
0 (K ′′′

cc))t
′′′
1 (Kdd)− (t

(5)
1 (Kcc)− t

(5)
1 (K ′

cc))t
′′′
0 (K

′
dd)) × J4

i (K
∗
i − ¯̄Ki)

2.

Here, Kd and K ′
d (between K̃(a∗i ) and K̄i) are in the remainders of F ′

1(K̃(a∗i )) and F ′
0(K̃(a∗i ));

Kc and K ′′
c (between K∗

i+1 and K̄i) are in the remainders of F1(K
∗
i+1) and F0(K

∗
i+1); and K ′

c and

K ′′′
c (between K̄i and K̃(a∗i )) are in the remainders of F1(K

∗
i ) and F0(K

∗
i ). We omit the subscripts

i in this notation. Differentiation is possible by the smoothness in Assumption 4. The denominator

F ′
1(K̄i)F

′′
0 (K̄i) − F ′

0(K̄i)F
′′
1 (K̄i) is positive when K̄i ∈ (K

¯
, K̄), since (F ′

1(K)/F ′
0(K))′ > 0 by

Assumption 4(i).
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Also, Kdd and K ′
dd (between K∗

i and ¯̄Ki) are in the remainders of t′1(K
∗
i ) and t′0(K

∗
i ); Kcc and

K ′′
cc (between K̃(a∗i ) and ¯̄Ki) are in the remainders of t1(K̃(a∗i )) and t0(K̃(a∗i )); and K ′

cc and K ′′′
cc

(between ¯̄Ki and K̃(a∗i−1)) are in the remainders of t1(K̃(a∗i−1)) and t0(K̃(a∗i−1)). Again we omit

the subscripts i. Differentiation is possible by the smoothness in Assumption 3 and Lemma 3(i), and

t′1(
¯̄Ki)t

′′
0(

¯̄Ki)− t′0(
¯̄Ki)t

′′
1(

¯̄Ki) > 0 when ¯̄Ki ∈ (K
¯
, K̄) by Assumption 3. Thus,

Ii − Ii−1 = −2Γ(K̄i)I
2
i − 2Γ(K̄i−1)I

2
i−1 − 4T ( ¯̄Ki)J

2
i − 2Rema

i − 2Rema
i−1 − 4RemK

i , (B.5)

Ji − Ii−1 = −2Γ(K̄i−1)I
2
i−1 − 2T ( ¯̄Ki)J

2
i − 2Rema

i−1 − 2RemK
i . (B.6)

To find the limit of bn(x), we first investigate bn(x)/bn(y) on (K
¯
, K̄). Choose any closed interval

[KL, KH ] ⊂ (K
¯
, K̄) and examine bn(x)/bn(y), for any x, y ∈ [KL, KH ] (x < y). Define iz :=

max{i : K∗
i ≤ z}. By Lemma 4, limn→∞K∗

1 = K
¯

, so for a large n,

bn(x) =
βn(K

∗
ix+1)− βn(K

∗
ix)

K∗
ix+1 −K∗

ix

=
1/n

Iix
.

Thus, for any large n,

bn(x)

bn(y)
=

(1/n)/Iix
(1/n)/Iiy

=
Iiy
Iiy−1

× ...× Iix+1

Iix
= exp

(
ln

(
Iiy
Iiy−1

)
+ ...+ ln

(
Iix+1

Iix

))
. (B.7)

The first-order Taylor expansion of ln
(

Ii
Ii−1

)
at 1 gives ln

(
Ii

Ii−1

)
= Ii

Ii−1
− 1− 1

2ti
( Ii
Ii−1

− 1)2, where

ti is between Ii
Ii−1

and 1, so Eq. (B.7) becomes

bn(x)

bn(y)
= exp

(
iy∑

i=ix+1

(
Ii
Ii−1

− 1)

)
/ exp

(
iy∑

i=ix+1

1

2ti
(
Ii
Ii−1

− 1)2
)
. (B.8)

By Eqs. (B.5) and (B.6), we have

Ii
Ii−1

= 1− 2Γ(K̄i)Ii
Ii
Ii−1

− 2Γ(K̄i−1)Ii−1 − 4T ( ¯̄Ki)Ji
Ji
Ii−1

−
2Rema

i + 2Rema
i−1 + 4RemK

i

Ii−1

,

(B.9)
Ji
Ii−1

= 1− 2Γ(K̄i−1)Ii−1 − 2T ( ¯̄Ki)Ji
Ji
Ii−1

−
2Rema

i−1 + 2RemK
i

Ii−1

. (B.10)
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Now let us discuss Eq. (B.8). First, we show three useful results. Results 1 and 3 are with proofs, and

Result 2 is a direct corollary of Result 1.

Result 1. We have maxi |Ii/Ii−1 − 1| → 0 and maxi |Ji/Ii−1 − 1| → 0 as n → ∞.

Proof of Result 1. For brevity, let Xi = Ii/Ii−1 and Yi = Ji/Ii−1. Equations (B.9) and (B.10) can be

rearranged into the following system:

Xi = 1−2Γ(K̄i)IiXi−2Γ(K̄i−1)Ii−1−4T ( ¯̄Ki)JiYi−2
Rema

i /Ii−1

Xi

Xi−2Rema
i−1/Ii−1−

4RemK
i /Ii−1

Yi

Yi,

Yi = 1− 2Γ(K̄i−1)Ii−1 − 2T ( ¯̄Ki)JiYi − 2Rema
i−1/Ii−1 −

2RemK
i /Ii−1

Yi

Yi.

Solving this system, we obtain

Xi =
1− 2Γ(K̄i−1)Ii−1 − 2Rema

i−1/Ii−1 − (4T ( ¯̄Ki)Ji +
4RemK

i /Ii−1

Yi
)Yi

1 + 2Γ(K̄i)Ii + 2
Rema

i /Ii−1

Xi

, (B.11)

Yi =
1− 2Γ(K̄i−1)Ii−1 − 2Rema

i−1/Ii−1

1 + 2T ( ¯̄Ki)Ji +
2RemK

i /Ii−1

Yi

. (B.12)

Here, Γ, T and all functions appearing in Rema and RemK that consist of higher-order derivatives of

F and t are continuous on [KL, KH ] by the continuous differentiability assumption, and are therefore

bounded. Let M > 0 be a uniform upper bound on their absolute values.

Notice that in Rema
i−1 we have |K̃(a∗i−1)− K̄i−1| ≤ Ii−1, since K̃(a∗i−1), K̄i−1 ∈ [K∗

i−1, K
∗
i ] by

Lemma 3(ii). Hence, by the triangle inequality, |Rema
i−1| ≤ M(I2i−1+I3i−1+I4i−1+I4i−1+I5i−1+I6i−1),

so |Rema
i−1/Ii−1| ≤ M(Ii−1 + I2i−1 + 2I3i−1 + I4i−1 + I5i−1). Since maxi Ii−1 → 0 in Lemma 4,

maxi |Rema
i−1/Ii−1| → 0.

Also, in RemK
i we have |K∗

i − ¯̄Ki| ≤ Ji, since K̃∗
i ,

¯̄Ki ∈ [K̃(a∗i−1), K̃(a∗i )]. Hence |RemK
i | ≤

M(J2
i +J3

i +J4
i +J4

i +J5
i +J6

i ), and so |(RemK
i /Ii−1)/Yi| = |RemK

i /Ji| ≤ M(Ji+J2
i +2J3

i +

J4
i + J5

i ). Since maxi Ji → 0 in Lemma 4, maxi |(RemK
i /Ii−1)/Yi| → 0.

We conclude that in Eq. (B.12), |Γ|, |T | ≤ M , and all indexed terms uniformly converge to 0.
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Thus, Yi → 1 uniformly on [KL, KH ].

Furthermore, in Rema
i we have |K̃(a∗i ) − K̄i| ≤ Ii, since K̃(a∗i ), K̄i ∈ [K∗

i , K
∗
i+1]. Hence

|Rema
i | ≤ M(I2i + I3i + I4i + I4i + I5i + I6i ), and so |(Rema

i /Ii−1)/Xi| = |Rema
i /Ii| ≤ M(Ii +

I2i + 2I3i + I4i + I5i ). Since maxi Ii → 0 in Lemma 4, maxi |(Rema
i /Ii−1)/Xi| → 0.

Therefore, in Eq. (B.11), |Γ|, |T | ≤ M , Yi uniformly converges to 1, and all other indexed terms

uniformly converge to 0. Thus, Xi → 1 uniformly on [KL, KH ].

Result 2. There exists η ∈ (0, 1) such that Ii/Ii−1, Ji/Ii−1 ∈ [1− η, 1 + η] for any i and large n.

Definition. Let (am)Mm=1, (bm)Mm=1, and (cm)
M
m=1 be vectors of nonnegative integers and let z =

min(am + bm + cm)
M
m=1. Let oi(z) denote

∑M
m=1 I

am
i−1I

bm
i J cm

i .

Result 3. We have
∑iy

i=ix+1 oi(z) → 0 for x, y ∈ [KL, KH ] if z ≥ 2.

Proof of Result 3. Let a, b, c ≥ 0 be integers. It suffices to show that
∑iy

ix+1 I
a
i−1I

b
i J

c
i → 0 for x, y ∈

[KL, KH ] if a + b + c ≥ 2. Without loss of generality, let a > 1; then 0 ≤
∑iy

ix+1 I
a
i−1I

b
i J

c
i ≤

(
∑iy

ix+1 Ii−1)(maxi Ii−1)
a−1(maxi Ii)

b(maxi Ji)
c =(y − x)(maxi Ii−1)

a−1

(maxi Ii)
b(maxi Ji)

c→ 0. This proof also works for b > 1 or c > 1.

To understand the term Ii/Ii−1 − 1 in Eq. (B.8), substitute Eq. (B.10) into the right-hand side of

Eq. (B.9), and subtract 1 from both sides to get

Ii
Ii−1

− 1 = −2Γ(K̄i)Ii − 2Γ(K̄i−1)Ii−1 − 4T ( ¯̄Ki)Ji +Residuali, (B.13)

where Residuali =

− (2Rema
i + 2Rema

i−1 + 4RemK
i )/Ii−1

− 2Γ(K̄i)Ii

(
−2Γ(K̄i)Ii

Ii
Ii−1

− 2Γ(K̄i−1)Ii−1 − 4T ( ¯̄Ki)Ji
Ji
Ii−1

−
2Rema

i + 2Rema
i−1 + 4RemK

i

Ii−1

)
− 4T ( ¯̄Ki)Ji

(
−2Γ(K̄i−1)Ii−1 − 2T ( ¯̄Ki)Ji

Ji
Ii−1

−
2Rema

i−1 + 2RemK
i

Ii−1

)
.
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In Residuali, we first examine Rema
i . Since |K̃(a∗i ) − K̄i| ≤ Ii (by the proof of Result 1),

each of R2, R3, R4, R5, R6 divided by its denominator should have absolute value at most a constant

times I3i , I4i , I4i , I5i , I6i , respectively. Since |R1| is at most a constant times I2i , by Eq. (B.4), R1 =

C1(F
′
0(K̄i)F

′′′
1 (Kd)− F ′

1(K̄i)F
′′′
0 (K ′

d))(Γ(K̄i)I
2
i +Rema

i )
2. The terms here have absolute values at

most a constant times I4i , I2i Rema
i (which is at most a constant times I2i (I

2
i +I3i +I4i +I4i +I5i +I6i )), and

(Rema
i )

2 (which is at most a constant times I4i +...+I12i ). Thus, |R1| is at most a constant times I4i plus

higher-order terms. Hence, |Rema
i | ≤ M1

1+η
(I3i + ...+ I12i ), for a constant M1. By Result 2, for large n,

|Rema
i

Ii−1
| ≤ M1

1+η
Ii

Ii−1
(I2i +...+I11i ) ≤ M1oi(2). Similarly, |Rema

i−1

Ii−1
| ≤ M2(I

2
i−1+...+I11i−1) ≤ M2oi(2).

By analogous arguments, |RemK
i | ≤ M3

1+η
(J3

i + ... + J12
i ), where M3 is a constant. For large n,

|RemK
i

Ii−1
| ≤ M3

1+η
Ji

Ii−1
(J2

i + ...+ J11
i ) ≤ M3oi(2).

Hence, for large n such that 0 < 1− η ≤ Ii/Ii−1, Ji/Ii−1 ≤ 1 + η and a constant M4,

|Residuali| ≤ M4oi(2) (B.14)

on [KL, KH ]. By Result 3, iy∑
i=ix+1

Residuali → 0, (B.15)

since 0 ≤ |
∑iy

i=ix+1Residuali| ≤
∑iy

i=ix+1 |Residuali| ≤
∑iy

i=ix+1M4oi(2) → 0. Squaring

Eq. (B.13) and using Eq. (B.14), for large n and some constant M5 we get | Ii
Ii−1

− 1|2 ≤ M5oi(2).

Hence for the denominator of Eq. (B.8) we have

exp

(
iy∑

i=ix+1

1

2ti
(
Ii
Ii−1

− 1)2
)

→ 1, (B.16)

because, with ti between 1 and Ii/Ii−1 and hence between 1− η and 1 + η by Result 2,

0 ≤ |
iy∑

i=ix+1

1

2ti
(
Ii
Ii−1

− 1)2| ≤ 1

2(1− η)

iy∑
i=ix+1

(
Ii
Ii−1

− 1)2 ≤ 1

2(1− η)

iy∑
i=ix+1

M5oi(2) → 0.

Now, substituting Eq. (B.13) in Eq. (B.8), we can rewrite Eq. (B.8) as

bn(x)

bn(y)
= exp

(
iy∑

i=ix+1

(−2Γ(K̄i)Ii − 2Γ(K̄i−1)Ii−1 − 4T ( ¯̄Ki)Ji)

)
×Rest(n; [x, y])

= exp (RS(−4Γ; [x, y]) +RS(−4T ; [x, y]))×Rest(n; [x, y]), (B.17)

57



where Rest(n; [x, y]) → 1 by Eq. (B.15) and Eq. (B.16), and RS(f, [x, y]) denotes a Riemann sum

of f on [x, y]. Because
∫ y

x f ′(a)/f(a)da = ln(|f(a)|)|yx, when x, y ∈ [KL, KH ],

bn(x)

bn(y)
→ exp

(
−4

∫ y

x

Γ(K)dK − 4

∫ y

x

T (K)dK

)

=

∣∣∣∣F ′
1(x)F

′′
0 (x)− F ′

0(x)F
′′
1 (x)

F ′
1(y)F

′′
0 (y)− F ′

0(y)F
′′
1 (y)

∣∣∣∣ 16 ∣∣∣∣t′1(x)t′′0(x)− t′0(x)t
′′
1(x)

t′1(y)t
′′
0(y)− t′0(y)t

′′
1(y)

∣∣∣∣ 16
=

∣∣∣∣F ′
1(x)F

′′
0 (x)− F ′

0(x)F
′′
1 (x)

F ′
1(y)F

′′
0 (y)− F ′

0(y)F
′′
1 (y)

∣∣∣∣ 16 ∣∣∣∣h′(ã(x))h′′(1− ã(x)) + h′(1− ã(x))h′′(ã(x))

h′(ã(y))h′′(1− ã(y)) + h′(1− ã(y))h′′(ã(y))

∣∣∣∣ 16 ∣∣∣∣ ã′(x)ã′(y)

∣∣∣∣ 12 .
Under Assumption 3, |h′(ã(x))h′′(1− ã(x))+h′(1− ã(x))h′′(ã(x))| = −(h′(ã(x))h′′(1− ã(x))+

h′(1− ã(x))h′′(ã(x))). By the monotone likelihood ratio property in Assumption 4(i), |F ′
1(x)F

′′
0 (x)−

F ′
0(x)F

′′
1 (x)| = F ′′

1 (x)F
′
0(x) − F ′′

0 (x)F
′
1(x). By the integrability assumption in Theorem 2, the

denominator as a function of y is integrable on (K
¯
, K̄). Let m(y) > 0 denote the denominator scaled

by its integral on (K
¯
, K̄), so that

∫ K̄

K
¯
m(y)dy = 1. Then, pointwise for x, y ∈ [KL, KH ],

lim
n→∞

bn(x)

bn(y)
=

m(x)

m(y)
. (B.18)

For any x, y ∈ (K
¯
, K̄), Eq. (B.18) holds because there always exist KL, KH such that x, y ∈

[KL, KH ].

Step 2. Prove convergence.

To show that for any y ∈ (K
¯
, K̄),

lim
n→∞

dn(y) = m(y), (B.19)

notice that by Eq. (B.18),

1

m(y)
=

∫ K̄

K
¯

m(x)

m(y)
dx =

∫ K̄

K
¯

lim
n→∞

dn(x)

dn(y)
dx

≤ lim inf
n→∞

∫ K̄

K
¯

dn(x)

dn(y)
dx = lim inf

n→∞

1

dn(y)
=

1

lim sup
n→∞

dn(y)
,

where the inequality is by Fatou’s lemma and the subsequent equality comes from the fact that
∫ K̄

K
¯
dn(x)dx =

58



1 for any n. Hence,

m(y) ≥ lim sup
n→∞

dn(y) > 0. (B.20)

Therefore lim supn→∞ dn(y) and dn(y) are dominated by m(y), which is integrable on (K
¯
, K̄). By

the Fatou–Lebesgue theorem,

1 = lim sup
n→∞

1 = lim sup
n→∞

∫ K̄

K
¯

dn(y)dy ≤
∫ K̄

K
¯

lim sup
n→∞

dn(y)dy ≤
∫ K̄

K
¯

m(y)dy = 1,

so
∫ K̄

K
¯
lim supn→∞ dn(y)dy =

∫ K̄

K
¯
m(y)dy. Combined with Eq. (B.20), this implies that, almost

everywhere,

lim sup
n→∞

dn(y) = m(y). (B.21)

Next, I show by contradiction that lim infn→∞ dn(y) = m(y). Suppose otherwise; then by

Eq. (B.21), there exists y0 ∈ (K
¯
, K̄) such that lim infn→∞ dn(y0) = m(y0)− δ ∈ [0,m(y0)). Hence

there is a convergent subsequence {dnk
(y0)} such that limk→∞ dnk

(y0) = m(y0)− δ. By Eq. (B.18),

for any x ∈ (K
¯
, K̄),

lim
k→∞

dnk
(x) =

m(y0)− δ

m(y0)
m(x).

Then, on the one hand, ∫ K̄

K
¯

lim
k→∞

dnk
(x)dx =

m(y0)− δ

m(y0)
,

but on the other hand, because dnk
(x) ≤ lim supk→∞ dnk

(x) ≤ lim supn→∞ dn(x) ≤ m(x), by the

dominated convergence theorem we have∫ K̄

K
¯

lim
k→∞

dnk
(x)dx = lim

k→∞

∫ K̄

K
¯

dnk
(x)dx = lim

k→∞
1 = 1,

a contradiction. This proves Eq. (B.19). Hence we have β∞(K) := βn(K) →
∫ K

K
¯
m(y)dy as

discussed in the beginning of the proof. Therefore, β′
∞(K) = m(K) ∝ λh(K)

1
6λF (K)

1
6 ã′(K)

1
2 .
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C Propositions 4, 5 and 6

Proof of Proposition 4. (i) By the definition of ã(K),

h′(1− a)

h′(a)
=

u1π

u0(1− π)
exp

(
2µ

σ2
K

)
. (C.1)

Hence,

K̃(a) =
σ2

2µ

(
lnh′(1− a)− lnh′(a)− ln

u1π

u0(1− π)

)
(C.2)

for a ∈ (0, 1), and K̃(a) = 2K1/2 − K̃(1− a), implying K̃(a) is symmetric about (1
2
, K1/2). Thus,

ã(K) is symmetric about (K1/2,
1
2
) on (K

¯
, K̄). This symmetry obviously holds outside (K

¯
, K̄). The

symmetry of ã(K) implies the symmetry of ã′(K) about K = K1/2.

(ii) Evaluating λh(K) at K1/2 + δ and K1/2 − δ with ã(K1/2 + δ) + ã(K1/2 − δ) = 1, we get

λh(K1/2 + δ) = λh(K1/2 − δ).

Proof of Proposition 5. (i) Since the hump-shaped λh(K)
1
6 ã′(K)

1
2 is symmetric about K1/2, its value

is higher ifK is closer toK1/2. Then, forK such thatKK1/2 > 0, β′
∞(K) = exp

(
−K2

6σ2

)
λh(K)

1
6 ã′(K)

1
2 ≥

exp
(
−K2

6σ2

)
λh(−K)

1
6 ã′(−K)

1
2 = β′

∞(−K). The inequality holds because K1/2 and K are closer

together than K1/2 and −K .

(i*) By arguments analogous to those used for (i), the value of the U-shaped λh(K)
1
6 ã′(K)

1
2 is

lower ifK is closer toK1/2. Then, forK such thatKK1/2 > 0, we have β′
∞(K) = exp

(
−K2

6σ2

)
λh(K)

1
6 ã′(K)

1
2

≤ exp
(
−K2

6σ2

)
λh(−K)

1
6 ã′(−K)

1
2 = β′

∞(−K).

(ii) Differentiating both sides of Eq. (C.1) with respect to K, we get

ã′ =
2µ

σ2

h′(ã)2

λh(K)

u1π

u0(1− π)
exp

(
2µ

σ2
K

)
.

Differentiating the multiplicative inverse of both sides, we get

ã′ =
2µ

σ2

h′(1− ã)2

λh(K)

/(
u1π

u0(1− π)
exp

(
2µ

σ2
K

))
.

60



The product of these two equations gives ã′2. Its square root is

ã′ =
2µ

σ2

h′(ã)h′(1− ã)

λh(K)
,

implying that

(λ
1
6
h (ã

′)
1
2 )6 = λh(ã

′)3 = (
2µ

σ2
)3
h′(ã)3h′(1− ã)3

λh(K)2
= (

2µ

σ2
)3

h′(ã)3h′(1− ã)3

(−h′(1− ã)h′′(ã)− h′′(1− ã)h′(ã))2
.

Hence, λ
1
6
h (ã

′)
1
2 is increasing (decreasing) if and only if

d

dã

(
h′(ã)3h′(1− ã)3

(−h′(1− ã)h′′(ã)− h′′(1− ã)h′(ã))2

)
× da

dK
≥ (≤) 0,

i.e.,
d

da

(
h′(a)3h′(1− a)3

(−h′(1− a)h′′(ã)− h′′(1− a)h′(a))2

)
≥ (≤) 0. (C.3)

For λ
1
6
h (ã

′)
1
2 to be hump-shaped in K , this needs to hold if and only if a < 1

2
.

(iii) A sufficient condition for Eq. (C.3) (≥) to hold is that both h′′(a)
h′(a)

and h′′′(a)
h′(a)

be decreasing in a.

If so, then for a < 1
2

we have a < 1− a, and hence

3

(
h′′(a)

h′(a)
− h′′(1− a)

h′(1− a)

)
λh + 2

(
h′′′(a)

h′(a)
− h′′′(1− a)

h′(1− a)

)
≥ 0.

This implies that Eq. (C.3) (≥) holds.

Proof of Proposition 6. To show Proposition 6, we only need to show that

lim
σ→0

(β∞(r)− β∞(−r)) = 1

for any r > 0.

Consider the case when K1/2 > 0 without loss of generality. Since K1/2 → 0 as σ → 0, we have

K1/2 < r
2

for small σ values. By Proposition 4, this means λH(K)
1
6 ≥ λH(r)

1
6 for K ∈ (0, r) and

λH(K)
1
6 ≤ λH(r)

1
6 for K > r. Also, it is obvious that λH(K)

1
6 ≥ λH(−r)

1
6 for K ∈ (−r, 0) and
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λH(K)
1
6 ≤ λH(r)

1
6 for K < −r. Therefore, we have

1− β∞(r)

β∞(r)− β∞(0)
=

∫ +∞
r λH(K)

1
6λF (K)

1
6dK∫ r

0 λH(K)
1
6λF (K)

1
6dK

≤
λH(r)

1
6

∫ +∞
r λF (K)

1
6dK

λH(r)
1
6

∫ r

0 λF (K)
1
6dK

=

∫ +∞
r λF (K)

1
6dK∫ r

0 λF (K)
1
6dK

,

β∞(−r)− 0

β∞(0)− β∞(−r)
=

∫ −r

−∞ λH(K)
1
6λF (K)

1
6dK∫ 0

−r λH(K)
1
6λF (K)

1
6dK

≤
λH(−r)

1
6

∫ −r

−∞ λF (K)
1
6dK

λH(−r)
1
6

∫ 0

−r λF (K)
1
6dK

=

∫ −r

−∞ λF (K)
1
6dK∫ 0

−r λF (K)
1
6dK

.

We know λF (K)
1
6 is a N(0, 3σ2) density, so∫ +∞

r λF (K)
1
6dK∫ r

0 λF (K)
1
6dK

=

∫ −r

−∞ λF (K)
1
6dK∫ 0

−r λF (K)
1
6dK

,

and hence, as σ → 0,

0 ≤ 1− β∞(r) + β(−r)− 0

β∞(r)− β∞(−r)
≤
∫ +∞
r λF (K)

1
6dK∫ r

0 λF (K)
1
6dK

+

∫ −r

−∞ λF (K)
1
6dK∫ 0

−r λF (K)
1
6dK

→ 0.

This means β∞(r)− β∞(−r) → 1 and hence proves the result.
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TABLE I:

Equilibrium for Some Common Utility Functions Under Assumption 4(ii)

h(a) β′
∞(K) ∝ exp

(
− K2

6σ2

)
× ...

Cosine difference sin
(
ϖ
2 a
) (

(πu1)
2 exp

(
2µ
σ2K

)
+ ((1− π)u0)

2 exp
(
− 2µ

σ2K
))− 1

2

Quadratic A(1− a)2 +B

(A < 0)

(
πu1 exp

(
µ
σ2K

)
+ (1− π)u0 exp

(
− µ

σ2K
))−1

Log ln(a)
(
πu1 exp

(
µ
σ2K

)
+ (1− π)u0 exp

(
− µ

σ2K
))− 1

3

Power 1
1−γ a

1−γ

(γ > 0, γ ̸= 1)

(
(πu1)

1
γ exp

(
µ

γσ2K
)
+ ((1− π)u0)

1
γ exp

(
− µ

γσ2K
)) γ−2

3

Exponential C0 − C1 exp(−Aa)

(A, C1 > 0)


1 for − σ2

2µ ln
(

πu1

(1−π)u0

)
− Aσ2

2µ < K ...

... < −σ2

2µ ln
(

πu1

(1−π)u0

)
+ Aσ2

2µ ;

0 otherwise
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FIGURE I:

Illustration of Example 1

(1− π)u0C
K
N pN−K(1− p)K

πu1C
K
N pK(1− p)N−K

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Notes: This illustration shows the fundamentals (given by arrows, corresponding to K = 0, ..., 5 anticlockwise) and
the partition (given by dashed lines) in Example 1. Parameter values are as follows: N = 5, n = 3, π = p = 0.6,
u1 = u0 = 1.
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FIGURE II:

Audience Appeal in Example 2

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↓

↑ ↑ ↑ ↓ ↓

↑ ↑ ↓ ↓ ↓

↑ ↓ ↓ ↓ ↓
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↑ ↓ ↓

↑ ↑ ↓

↑ ↑ ↑

Fundamental K/N
(optimism level)

100%

80%

60%

40%

20%

0%

Report k/n
(optimism level)

100%

67%

33%

0%
K/N

k/n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Notes: This illustration shows the information structure (left) and the interpolated report curve (right), with N = 5,
n = 3, πu1 = 0.9, (1− π)u0 = 0.1, and h(a) = sin(ϖa/2).

FIGURE III:

Sensationalism in Example 2

↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↓

↑ ↑ ↑ ↓ ↓

↑ ↑ ↓ ↓ ↓

↑ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↑ ↓ ↓

↑ ↑ ↓

↑ ↑ ↑

Fundamental K/N
(optimism level)

100%

80%

60%

40%

20%

0%

Report k/n
(optimism level)

100%

67%

33%

0%
K/N

k/n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Notes: This illustration shows the information structure (left) and the interpolated report curve (right), with N = 5,
n = 3, πu1 = 0.6, (1− π)u0 = 0.4, and h(a) = sin(ϖa/2).
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FIGURE IV:

Illustration of Theorem 2

Notes: This is an illustration of Theorem 2 with cosine-difference utility. Parameter values are as follows: µ = 0.5,
σ = 1, u1/u0 = 2, π = 2/3. The term λh(K)

1
6 ã′(K)

1
2 is normalized to equal 1 at −σ2 ln(πu1/(1− π)u0)/2µ.

In the plot of the report distributions, the blue (positively skewed), orange (negatively skewed), and dotted curves
respectively show the conditional density on θ = 0, the conditional density on θ = 1, and the unconditional density.

FIGURE V:

Illustration of Example 3

Notes: This is an illustration of Example 3 with audience-appeal and alarmist biases. Parameter values are as fol-
lows: µ = 1, σ = 1, πu1/(1 − π)u0 = 5, π = 2/3. The term λh(K)

1
6 ã′(K)

1
2 is normalized to equal 1 at

−σ2 ln(πu1/(1− π)u0)/2µ. The curves in blue, orange, yellow, green, and purple (from low to high for the left
panel; from high to low in terms of values at K = 0 for the right panel) are for γ = 0.5, 1, 2, 5, 10, respectively.
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